Metamath Proof Explorer


Theorem nghmco

Description: The composition of normed group homomorphisms is a normed group homomorphism. (Contributed by Mario Carneiro, 20-Oct-2015)

Ref Expression
Assertion nghmco FTNGHomUGSNGHomTFGSNGHomU

Proof

Step Hyp Ref Expression
1 nghmrcl1 GSNGHomTSNrmGrp
2 1 adantl FTNGHomUGSNGHomTSNrmGrp
3 nghmrcl2 FTNGHomUUNrmGrp
4 3 adantr FTNGHomUGSNGHomTUNrmGrp
5 nghmghm FTNGHomUFTGrpHomU
6 nghmghm GSNGHomTGSGrpHomT
7 ghmco FTGrpHomUGSGrpHomTFGSGrpHomU
8 5 6 7 syl2an FTNGHomUGSNGHomTFGSGrpHomU
9 eqid TnormOpU=TnormOpU
10 9 nghmcl FTNGHomUTnormOpUF
11 eqid SnormOpT=SnormOpT
12 11 nghmcl GSNGHomTSnormOpTG
13 remulcl TnormOpUFSnormOpTGTnormOpUFSnormOpTG
14 10 12 13 syl2an FTNGHomUGSNGHomTTnormOpUFSnormOpTG
15 eqid SnormOpU=SnormOpU
16 15 9 11 nmoco FTNGHomUGSNGHomTSnormOpUFGTnormOpUFSnormOpTG
17 15 bddnghm SNrmGrpUNrmGrpFGSGrpHomUTnormOpUFSnormOpTGSnormOpUFGTnormOpUFSnormOpTGFGSNGHomU
18 2 4 8 14 16 17 syl32anc FTNGHomUGSNGHomTFGSNGHomU