Metamath Proof Explorer


Theorem nghmplusg

Description: The sum of two bounded linear operators is bounded linear. (Contributed by Mario Carneiro, 20-Oct-2015)

Ref Expression
Hypothesis nghmplusg.p +˙=+T
Assertion nghmplusg TAbelFSNGHomTGSNGHomTF+˙fGSNGHomT

Proof

Step Hyp Ref Expression
1 nghmplusg.p +˙=+T
2 nghmrcl1 FSNGHomTSNrmGrp
3 2 3ad2ant2 TAbelFSNGHomTGSNGHomTSNrmGrp
4 nghmrcl2 FSNGHomTTNrmGrp
5 4 3ad2ant2 TAbelFSNGHomTGSNGHomTTNrmGrp
6 id TAbelTAbel
7 nghmghm FSNGHomTFSGrpHomT
8 nghmghm GSNGHomTGSGrpHomT
9 1 ghmplusg TAbelFSGrpHomTGSGrpHomTF+˙fGSGrpHomT
10 6 7 8 9 syl3an TAbelFSNGHomTGSNGHomTF+˙fGSGrpHomT
11 eqid SnormOpT=SnormOpT
12 11 nghmcl FSNGHomTSnormOpTF
13 12 3ad2ant2 TAbelFSNGHomTGSNGHomTSnormOpTF
14 11 nghmcl GSNGHomTSnormOpTG
15 14 3ad2ant3 TAbelFSNGHomTGSNGHomTSnormOpTG
16 13 15 readdcld TAbelFSNGHomTGSNGHomTSnormOpTF+SnormOpTG
17 11 1 nmotri TAbelFSNGHomTGSNGHomTSnormOpTF+˙fGSnormOpTF+SnormOpTG
18 11 bddnghm SNrmGrpTNrmGrpF+˙fGSGrpHomTSnormOpTF+SnormOpTGSnormOpTF+˙fGSnormOpTF+SnormOpTGF+˙fGSNGHomT
19 3 5 10 16 17 18 syl32anc TAbelFSNGHomTGSNGHomTF+˙fGSNGHomT