Metamath Proof Explorer


Theorem nmge0

Description: The norm of a normed group is nonnegative. Second part of Problem 2 of Kreyszig p. 64. (Contributed by NM, 28-Nov-2006) (Revised by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nmf.x X=BaseG
nmf.n N=normG
Assertion nmge0 GNrmGrpAX0NA

Proof

Step Hyp Ref Expression
1 nmf.x X=BaseG
2 nmf.n N=normG
3 ngpgrp GNrmGrpGGrp
4 eqid 0G=0G
5 1 4 grpidcl GGrp0GX
6 3 5 syl GNrmGrp0GX
7 6 adantr GNrmGrpAX0GX
8 ngpxms GNrmGrpG∞MetSp
9 eqid distG=distG
10 1 9 xmsge0 G∞MetSpAX0GX0AdistG0G
11 8 10 syl3an1 GNrmGrpAX0GX0AdistG0G
12 7 11 mpd3an3 GNrmGrpAX0AdistG0G
13 2 1 4 9 nmval AXNA=AdistG0G
14 13 adantl GNrmGrpAXNA=AdistG0G
15 12 14 breqtrrd GNrmGrpAX0NA