Metamath Proof Explorer


Theorem nmopval

Description: Value of the norm of a Hilbert space operator. (Contributed by NM, 18-Jan-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion nmopval T:normopT=supx|ynormy1x=normTy*<

Proof

Step Hyp Ref Expression
1 xrltso <Or*
2 1 supex supx|ynormy1x=normTy*<V
3 ax-hilex V
4 fveq1 t=Tty=Ty
5 4 fveq2d t=Tnormty=normTy
6 5 eqeq2d t=Tx=normtyx=normTy
7 6 anbi2d t=Tnormy1x=normtynormy1x=normTy
8 7 rexbidv t=Tynormy1x=normtyynormy1x=normTy
9 8 abbidv t=Tx|ynormy1x=normty=x|ynormy1x=normTy
10 9 supeq1d t=Tsupx|ynormy1x=normty*<=supx|ynormy1x=normTy*<
11 df-nmop normop=tsupx|ynormy1x=normty*<
12 2 3 3 10 11 fvmptmap T:normopT=supx|ynormy1x=normTy*<