Metamath Proof Explorer


Theorem nmtri2

Description: Triangle inequality for the norm of two subtractions. (Contributed by NM, 24-Feb-2008) (Revised by AV, 8-Oct-2021)

Ref Expression
Hypotheses nmtri2.x X=BaseG
nmtri2.n N=normG
nmtri2.m -˙=-G
Assertion nmtri2 GNrmGrpAXBXCXNA-˙CNA-˙B+NB-˙C

Proof

Step Hyp Ref Expression
1 nmtri2.x X=BaseG
2 nmtri2.n N=normG
3 nmtri2.m -˙=-G
4 ngpgrp GNrmGrpGGrp
5 eqid +G=+G
6 1 5 3 grpnpncan GGrpAXBXCXA-˙B+GB-˙C=A-˙C
7 6 eqcomd GGrpAXBXCXA-˙C=A-˙B+GB-˙C
8 4 7 sylan GNrmGrpAXBXCXA-˙C=A-˙B+GB-˙C
9 8 fveq2d GNrmGrpAXBXCXNA-˙C=NA-˙B+GB-˙C
10 simpl GNrmGrpAXBXCXGNrmGrp
11 4 adantr GNrmGrpAXBXCXGGrp
12 simpr1 GNrmGrpAXBXCXAX
13 simpr2 GNrmGrpAXBXCXBX
14 1 3 grpsubcl GGrpAXBXA-˙BX
15 11 12 13 14 syl3anc GNrmGrpAXBXCXA-˙BX
16 simpr3 GNrmGrpAXBXCXCX
17 1 3 grpsubcl GGrpBXCXB-˙CX
18 11 13 16 17 syl3anc GNrmGrpAXBXCXB-˙CX
19 1 2 5 nmtri GNrmGrpA-˙BXB-˙CXNA-˙B+GB-˙CNA-˙B+NB-˙C
20 10 15 18 19 syl3anc GNrmGrpAXBXCXNA-˙B+GB-˙CNA-˙B+NB-˙C
21 9 20 eqbrtrd GNrmGrpAXBXCXNA-˙CNA-˙B+NB-˙C