Metamath Proof Explorer


Theorem nn0gcdsq

Description: Squaring commutes with GCD, in particular two coprime numbers have coprime squares. (Contributed by Stefan O'Rear, 15-Sep-2014)

Ref Expression
Assertion nn0gcdsq A0B0AgcdB2=A2gcdB2

Proof

Step Hyp Ref Expression
1 elnn0 A0AA=0
2 elnn0 B0BB=0
3 sqgcd ABAgcdB2=A2gcdB2
4 nncn BB
5 abssq BB2=B2
6 4 5 syl BB2=B2
7 nnz BB
8 gcd0id B0gcdB=B
9 7 8 syl B0gcdB=B
10 9 oveq1d B0gcdB2=B2
11 sq0 02=0
12 11 a1i B02=0
13 12 oveq1d B02gcdB2=0gcdB2
14 zsqcl BB2
15 gcd0id B20gcdB2=B2
16 7 14 15 3syl B0gcdB2=B2
17 13 16 eqtrd B02gcdB2=B2
18 6 10 17 3eqtr4d B0gcdB2=02gcdB2
19 18 adantl A=0B0gcdB2=02gcdB2
20 oveq1 A=0AgcdB=0gcdB
21 20 oveq1d A=0AgcdB2=0gcdB2
22 oveq1 A=0A2=02
23 22 oveq1d A=0A2gcdB2=02gcdB2
24 21 23 eqeq12d A=0AgcdB2=A2gcdB20gcdB2=02gcdB2
25 24 adantr A=0BAgcdB2=A2gcdB20gcdB2=02gcdB2
26 19 25 mpbird A=0BAgcdB2=A2gcdB2
27 nncn AA
28 abssq AA2=A2
29 27 28 syl AA2=A2
30 nnz AA
31 gcdid0 AAgcd0=A
32 30 31 syl AAgcd0=A
33 32 oveq1d AAgcd02=A2
34 11 a1i A02=0
35 34 oveq2d AA2gcd02=A2gcd0
36 zsqcl AA2
37 gcdid0 A2A2gcd0=A2
38 30 36 37 3syl AA2gcd0=A2
39 35 38 eqtrd AA2gcd02=A2
40 29 33 39 3eqtr4d AAgcd02=A2gcd02
41 40 adantr AB=0Agcd02=A2gcd02
42 oveq2 B=0AgcdB=Agcd0
43 42 oveq1d B=0AgcdB2=Agcd02
44 oveq1 B=0B2=02
45 44 oveq2d B=0A2gcdB2=A2gcd02
46 43 45 eqeq12d B=0AgcdB2=A2gcdB2Agcd02=A2gcd02
47 46 adantl AB=0AgcdB2=A2gcdB2Agcd02=A2gcd02
48 41 47 mpbird AB=0AgcdB2=A2gcdB2
49 gcd0val 0gcd0=0
50 49 oveq1i 0gcd02=02
51 11 11 oveq12i 02gcd02=0gcd0
52 51 49 eqtri 02gcd02=0
53 11 50 52 3eqtr4i 0gcd02=02gcd02
54 oveq12 A=0B=0AgcdB=0gcd0
55 54 oveq1d A=0B=0AgcdB2=0gcd02
56 22 44 oveqan12d A=0B=0A2gcdB2=02gcd02
57 53 55 56 3eqtr4a A=0B=0AgcdB2=A2gcdB2
58 3 26 48 57 ccase AA=0BB=0AgcdB2=A2gcdB2
59 1 2 58 syl2anb A0B0AgcdB2=A2gcdB2