Description: Squaring commutes with GCD, in particular two coprime numbers have coprime squares. (Contributed by Stefan O'Rear, 15-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | nn0gcdsq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 | |
|
2 | elnn0 | |
|
3 | sqgcd | |
|
4 | nncn | |
|
5 | abssq | |
|
6 | 4 5 | syl | |
7 | nnz | |
|
8 | gcd0id | |
|
9 | 7 8 | syl | |
10 | 9 | oveq1d | |
11 | sq0 | |
|
12 | 11 | a1i | |
13 | 12 | oveq1d | |
14 | zsqcl | |
|
15 | gcd0id | |
|
16 | 7 14 15 | 3syl | |
17 | 13 16 | eqtrd | |
18 | 6 10 17 | 3eqtr4d | |
19 | 18 | adantl | |
20 | oveq1 | |
|
21 | 20 | oveq1d | |
22 | oveq1 | |
|
23 | 22 | oveq1d | |
24 | 21 23 | eqeq12d | |
25 | 24 | adantr | |
26 | 19 25 | mpbird | |
27 | nncn | |
|
28 | abssq | |
|
29 | 27 28 | syl | |
30 | nnz | |
|
31 | gcdid0 | |
|
32 | 30 31 | syl | |
33 | 32 | oveq1d | |
34 | 11 | a1i | |
35 | 34 | oveq2d | |
36 | zsqcl | |
|
37 | gcdid0 | |
|
38 | 30 36 37 | 3syl | |
39 | 35 38 | eqtrd | |
40 | 29 33 39 | 3eqtr4d | |
41 | 40 | adantr | |
42 | oveq2 | |
|
43 | 42 | oveq1d | |
44 | oveq1 | |
|
45 | 44 | oveq2d | |
46 | 43 45 | eqeq12d | |
47 | 46 | adantl | |
48 | 41 47 | mpbird | |
49 | gcd0val | |
|
50 | 49 | oveq1i | |
51 | 11 11 | oveq12i | |
52 | 51 49 | eqtri | |
53 | 11 50 52 | 3eqtr4i | |
54 | oveq12 | |
|
55 | 54 | oveq1d | |
56 | 22 44 | oveqan12d | |
57 | 53 55 56 | 3eqtr4a | |
58 | 3 26 48 57 | ccase | |
59 | 1 2 58 | syl2anb | |