Metamath Proof Explorer


Theorem nn0n0n1ge2

Description: A nonnegative integer which is neither 0 nor 1 is greater than or equal to 2. (Contributed by Alexander van der Vekens, 6-Dec-2017)

Ref Expression
Assertion nn0n0n1ge2 N0N0N12N

Proof

Step Hyp Ref Expression
1 nn0cn N0N
2 1cnd N01
3 1 2 2 subsub4d N0N-1-1=N1+1
4 1p1e2 1+1=2
5 4 oveq2i N1+1=N2
6 3 5 eqtr2di N0N2=N-1-1
7 6 3ad2ant1 N0N0N1N2=N-1-1
8 3simpa N0N0N1N0N0
9 elnnne0 NN0N0
10 8 9 sylibr N0N0N1N
11 nnm1nn0 NN10
12 10 11 syl N0N0N1N10
13 1 2 subeq0ad N0N1=0N=1
14 13 biimpd N0N1=0N=1
15 14 necon3d N0N1N10
16 15 imp N0N1N10
17 16 3adant2 N0N0N1N10
18 elnnne0 N1N10N10
19 12 17 18 sylanbrc N0N0N1N1
20 nnm1nn0 N1N-1-10
21 19 20 syl N0N0N1N-1-10
22 7 21 eqeltrd N0N0N1N20
23 2nn0 20
24 23 jctl N020N0
25 24 3ad2ant1 N0N0N120N0
26 nn0sub 20N02NN20
27 25 26 syl N0N0N12NN20
28 22 27 mpbird N0N0N12N