Metamath Proof Explorer


Theorem nn0o1gt2

Description: An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020)

Ref Expression
Assertion nn0o1gt2 N 0 N + 1 2 0 N = 1 2 < N

Proof

Step Hyp Ref Expression
1 elnn0 N 0 N N = 0
2 elnnnn0c N N 0 1 N
3 1red N 0 1
4 nn0re N 0 N
5 3 4 leloed N 0 1 N 1 < N 1 = N
6 1zzd N 0 1
7 nn0z N 0 N
8 zltp1le 1 N 1 < N 1 + 1 N
9 6 7 8 syl2anc N 0 1 < N 1 + 1 N
10 1p1e2 1 + 1 = 2
11 10 breq1i 1 + 1 N 2 N
12 11 a1i N 0 1 + 1 N 2 N
13 2re 2
14 13 a1i N 0 2
15 14 4 leloed N 0 2 N 2 < N 2 = N
16 9 12 15 3bitrd N 0 1 < N 2 < N 2 = N
17 olc 2 < N N = 1 2 < N
18 17 2a1d 2 < N N 0 N + 1 2 0 N = 1 2 < N
19 oveq1 N = 2 N + 1 = 2 + 1
20 19 oveq1d N = 2 N + 1 2 = 2 + 1 2
21 20 eqcoms 2 = N N + 1 2 = 2 + 1 2
22 21 adantl N 0 2 = N N + 1 2 = 2 + 1 2
23 2p1e3 2 + 1 = 3
24 23 oveq1i 2 + 1 2 = 3 2
25 22 24 eqtrdi N 0 2 = N N + 1 2 = 3 2
26 25 eleq1d N 0 2 = N N + 1 2 0 3 2 0
27 3halfnz ¬ 3 2
28 nn0z 3 2 0 3 2
29 28 pm2.24d 3 2 0 ¬ 3 2 N = 1 2 < N
30 27 29 mpi 3 2 0 N = 1 2 < N
31 26 30 syl6bi N 0 2 = N N + 1 2 0 N = 1 2 < N
32 31 expcom 2 = N N 0 N + 1 2 0 N = 1 2 < N
33 18 32 jaoi 2 < N 2 = N N 0 N + 1 2 0 N = 1 2 < N
34 33 com12 N 0 2 < N 2 = N N + 1 2 0 N = 1 2 < N
35 16 34 sylbid N 0 1 < N N + 1 2 0 N = 1 2 < N
36 35 com12 1 < N N 0 N + 1 2 0 N = 1 2 < N
37 orc N = 1 N = 1 2 < N
38 37 eqcoms 1 = N N = 1 2 < N
39 38 2a1d 1 = N N 0 N + 1 2 0 N = 1 2 < N
40 36 39 jaoi 1 < N 1 = N N 0 N + 1 2 0 N = 1 2 < N
41 40 com12 N 0 1 < N 1 = N N + 1 2 0 N = 1 2 < N
42 5 41 sylbid N 0 1 N N + 1 2 0 N = 1 2 < N
43 42 imp N 0 1 N N + 1 2 0 N = 1 2 < N
44 2 43 sylbi N N + 1 2 0 N = 1 2 < N
45 oveq1 N = 0 N + 1 = 0 + 1
46 0p1e1 0 + 1 = 1
47 45 46 eqtrdi N = 0 N + 1 = 1
48 47 oveq1d N = 0 N + 1 2 = 1 2
49 48 eleq1d N = 0 N + 1 2 0 1 2 0
50 halfnz ¬ 1 2
51 nn0z 1 2 0 1 2
52 51 pm2.24d 1 2 0 ¬ 1 2 N = 1 2 < N
53 50 52 mpi 1 2 0 N = 1 2 < N
54 49 53 syl6bi N = 0 N + 1 2 0 N = 1 2 < N
55 44 54 jaoi N N = 0 N + 1 2 0 N = 1 2 < N
56 1 55 sylbi N 0 N + 1 2 0 N = 1 2 < N
57 56 imp N 0 N + 1 2 0 N = 1 2 < N