Metamath Proof Explorer


Theorem nnadddir

Description: Right-distributivity for natural numbers without ax-mulcom . (Contributed by SN, 5-Feb-2024)

Ref Expression
Assertion nnadddir ABCA+BC=AC+BC

Proof

Step Hyp Ref Expression
1 oveq2 x=1A+Bx=A+B1
2 oveq2 x=1Ax=A1
3 oveq2 x=1Bx=B1
4 2 3 oveq12d x=1Ax+Bx=A1+B1
5 1 4 eqeq12d x=1A+Bx=Ax+BxA+B1=A1+B1
6 5 imbi2d x=1ABA+Bx=Ax+BxABA+B1=A1+B1
7 oveq2 x=yA+Bx=A+By
8 oveq2 x=yAx=Ay
9 oveq2 x=yBx=By
10 8 9 oveq12d x=yAx+Bx=Ay+By
11 7 10 eqeq12d x=yA+Bx=Ax+BxA+By=Ay+By
12 11 imbi2d x=yABA+Bx=Ax+BxABA+By=Ay+By
13 oveq2 x=y+1A+Bx=A+By+1
14 oveq2 x=y+1Ax=Ay+1
15 oveq2 x=y+1Bx=By+1
16 14 15 oveq12d x=y+1Ax+Bx=Ay+1+By+1
17 13 16 eqeq12d x=y+1A+Bx=Ax+BxA+By+1=Ay+1+By+1
18 17 imbi2d x=y+1ABA+Bx=Ax+BxABA+By+1=Ay+1+By+1
19 oveq2 x=CA+Bx=A+BC
20 oveq2 x=CAx=AC
21 oveq2 x=CBx=BC
22 20 21 oveq12d x=CAx+Bx=AC+BC
23 19 22 eqeq12d x=CA+Bx=Ax+BxA+BC=AC+BC
24 23 imbi2d x=CABA+Bx=Ax+BxABA+BC=AC+BC
25 nnaddcl ABA+B
26 25 nnred ABA+B
27 ax-1rid A+BA+B1=A+B
28 26 27 syl ABA+B1=A+B
29 nnre AA
30 ax-1rid AA1=A
31 29 30 syl AA1=A
32 nnre BB
33 ax-1rid BB1=B
34 32 33 syl BB1=B
35 31 34 oveqan12d ABA1+B1=A+B
36 28 35 eqtr4d ABA+B1=A1+B1
37 simp2l yABA+By=Ay+ByA
38 simp2r yABA+By=Ay+ByB
39 37 38 nnaddcld yABA+By=Ay+ByA+B
40 39 nncnd yABA+By=Ay+ByA+B
41 simp1 yABA+By=Ay+Byy
42 41 nncnd yABA+By=Ay+Byy
43 1cnd yABA+By=Ay+By1
44 40 42 43 adddid yABA+By=Ay+ByA+By+1=A+By+A+B1
45 37 nnred yABA+By=Ay+ByA
46 45 30 syl yABA+By=Ay+ByA1=A
47 46 oveq2d yABA+By=Ay+ByAy+A1=Ay+A
48 38 nnred yABA+By=Ay+ByB
49 48 33 syl yABA+By=Ay+ByB1=B
50 49 oveq2d yABA+By=Ay+ByBy+B1=By+B
51 47 50 oveq12d yABA+By=Ay+ByAy+A1+By+B1=Ay+A+By+B
52 37 41 nnmulcld yABA+By=Ay+ByAy
53 52 nncnd yABA+By=Ay+ByAy
54 37 nncnd yABA+By=Ay+ByA
55 38 41 nnmulcld yABA+By=Ay+ByBy
56 55 38 nnaddcld yABA+By=Ay+ByBy+B
57 56 nncnd yABA+By=Ay+ByBy+B
58 53 54 57 addassd yABA+By=Ay+ByAy+A+By+B=Ay+A+By+B
59 55 nncnd yABA+By=Ay+ByBy
60 38 nncnd yABA+By=Ay+ByB
61 54 59 60 addassd yABA+By=Ay+ByA+By+B=A+By+B
62 61 oveq2d yABA+By=Ay+ByAy+A+By+B=Ay+A+By+B
63 59 54 60 addassd yABA+By=Ay+ByBy+A+B=By+A+B
64 63 oveq2d yABA+By=Ay+ByAy+By+A+B=Ay+By+A+B
65 nnaddcom AByA+By=By+A
66 37 55 65 syl2anc yABA+By=Ay+ByA+By=By+A
67 66 oveq1d yABA+By=Ay+ByA+By+B=By+A+B
68 67 oveq2d yABA+By=Ay+ByAy+A+By+B=Ay+By+A+B
69 53 59 40 addassd yABA+By=Ay+ByAy+By+A+B=Ay+By+A+B
70 64 68 69 3eqtr4d yABA+By=Ay+ByAy+A+By+B=Ay+By+A+B
71 58 62 70 3eqtr2d yABA+By=Ay+ByAy+A+By+B=Ay+By+A+B
72 51 71 eqtrd yABA+By=Ay+ByAy+A1+By+B1=Ay+By+A+B
73 54 42 43 adddid yABA+By=Ay+ByAy+1=Ay+A1
74 60 42 43 adddid yABA+By=Ay+ByBy+1=By+B1
75 73 74 oveq12d yABA+By=Ay+ByAy+1+By+1=Ay+A1+By+B1
76 simp3 yABA+By=Ay+ByA+By=Ay+By
77 39 nnred yABA+By=Ay+ByA+B
78 77 27 syl yABA+By=Ay+ByA+B1=A+B
79 76 78 oveq12d yABA+By=Ay+ByA+By+A+B1=Ay+By+A+B
80 72 75 79 3eqtr4d yABA+By=Ay+ByAy+1+By+1=A+By+A+B1
81 44 80 eqtr4d yABA+By=Ay+ByA+By+1=Ay+1+By+1
82 81 3exp yABA+By=Ay+ByA+By+1=Ay+1+By+1
83 82 a2d yABA+By=Ay+ByABA+By+1=Ay+1+By+1
84 6 12 18 24 36 83 nnind CABA+BC=AC+BC
85 84 com12 ABCA+BC=AC+BC
86 85 3impia ABCA+BC=AC+BC