Description: Distributive law for natural numbers (left-distributivity). Theorem 4K(3) of Enderton p. 81. (Contributed by NM, 20-Sep-1995) (Revised by Mario Carneiro, 15-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | nndi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | 1 | oveq2d | |
3 | oveq2 | |
|
4 | 3 | oveq2d | |
5 | 2 4 | eqeq12d | |
6 | 5 | imbi2d | |
7 | oveq2 | |
|
8 | 7 | oveq2d | |
9 | oveq2 | |
|
10 | 9 | oveq2d | |
11 | 8 10 | eqeq12d | |
12 | oveq2 | |
|
13 | 12 | oveq2d | |
14 | oveq2 | |
|
15 | 14 | oveq2d | |
16 | 13 15 | eqeq12d | |
17 | oveq2 | |
|
18 | 17 | oveq2d | |
19 | oveq2 | |
|
20 | 19 | oveq2d | |
21 | 18 20 | eqeq12d | |
22 | nna0 | |
|
23 | 22 | adantl | |
24 | 23 | oveq2d | |
25 | nnmcl | |
|
26 | nna0 | |
|
27 | 25 26 | syl | |
28 | 24 27 | eqtr4d | |
29 | nnm0 | |
|
30 | 29 | adantr | |
31 | 30 | oveq2d | |
32 | 28 31 | eqtr4d | |
33 | oveq1 | |
|
34 | nnasuc | |
|
35 | 34 | 3adant1 | |
36 | 35 | oveq2d | |
37 | nnacl | |
|
38 | nnmsuc | |
|
39 | 37 38 | sylan2 | |
40 | 39 | 3impb | |
41 | 36 40 | eqtrd | |
42 | nnmsuc | |
|
43 | 42 | 3adant2 | |
44 | 43 | oveq2d | |
45 | nnmcl | |
|
46 | nnaass | |
|
47 | 25 46 | syl3an1 | |
48 | 45 47 | syl3an2 | |
49 | 48 | 3exp | |
50 | 49 | exp4b | |
51 | 50 | pm2.43a | |
52 | 51 | com4r | |
53 | 52 | pm2.43i | |
54 | 53 | 3imp | |
55 | 44 54 | eqtr4d | |
56 | 41 55 | eqeq12d | |
57 | 33 56 | imbitrrid | |
58 | 57 | 3exp | |
59 | 58 | com3r | |
60 | 59 | impd | |
61 | 11 16 21 32 60 | finds2 | |
62 | 6 61 | vtoclga | |
63 | 62 | expdcom | |
64 | 63 | 3imp | |