Metamath Proof Explorer


Theorem nndivlub

Description: A factor of a positive integer cannot exceed it. (Contributed by Jeff Hoffman, 17-Jun-2008)

Ref Expression
Assertion nndivlub A B A B B A

Proof

Step Hyp Ref Expression
1 nnre B B
2 nngt0 B 0 < B
3 1 2 jca B B 0 < B
4 nnre A A
5 nngt0 A 0 < A
6 4 5 jca A A 0 < A
7 nnge1 A B 1 A B
8 lediv2 B 0 < B A 0 < A A 0 < A B A A A A B
9 8 3anidm23 B 0 < B A 0 < A B A A A A B
10 recn A A
11 10 adantr A 0 < A A
12 gt0ne0 A 0 < A A 0
13 divid A A 0 A A = 1
14 13 breq1d A A 0 A A A B 1 A B
15 11 12 14 syl2anc A 0 < A A A A B 1 A B
16 15 adantl B 0 < B A 0 < A A A A B 1 A B
17 9 16 bitrd B 0 < B A 0 < A B A 1 A B
18 7 17 syl5ibr B 0 < B A 0 < A A B B A
19 3 6 18 syl2anr A B A B B A