| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnmulcl |  | 
						
							| 2 |  | nncn |  | 
						
							| 3 | 2 | 3ad2ant2 |  | 
						
							| 4 |  | simp3 |  | 
						
							| 5 |  | nncn |  | 
						
							| 6 |  | nnne0 |  | 
						
							| 7 | 5 6 | jca |  | 
						
							| 8 | 7 | 3ad2ant1 |  | 
						
							| 9 |  | nnne0 |  | 
						
							| 10 | 2 9 | jca |  | 
						
							| 11 | 10 | 3ad2ant2 |  | 
						
							| 12 |  | divmul24 |  | 
						
							| 13 | 3 4 8 11 12 | syl22anc |  | 
						
							| 14 | 2 9 | dividd |  | 
						
							| 15 | 14 | oveq1d |  | 
						
							| 16 | 15 | 3ad2ant2 |  | 
						
							| 17 |  | divcl |  | 
						
							| 18 | 17 | 3expb |  | 
						
							| 19 | 7 18 | sylan2 |  | 
						
							| 20 | 19 | ancoms |  | 
						
							| 21 | 20 | mullidd |  | 
						
							| 22 | 21 | 3adant2 |  | 
						
							| 23 | 13 16 22 | 3eqtrd |  | 
						
							| 24 | 23 | eleq1d |  | 
						
							| 25 | 1 24 | imbitrid |  | 
						
							| 26 | 25 | imp |  |