Metamath Proof Explorer


Theorem nndivtr

Description: Transitive property of divisibility: if A divides B and B divides C , then A divides C . Typically, C would be an integer, although the theorem holds for complex C . (Contributed by NM, 3-May-2005)

Ref Expression
Assertion nndivtr A B C B A C B C A

Proof

Step Hyp Ref Expression
1 nnmulcl B A C B B A C B
2 nncn B B
3 2 3ad2ant2 A B C B
4 simp3 A B C C
5 nncn A A
6 nnne0 A A 0
7 5 6 jca A A A 0
8 7 3ad2ant1 A B C A A 0
9 nnne0 B B 0
10 2 9 jca B B B 0
11 10 3ad2ant2 A B C B B 0
12 divmul24 B C A A 0 B B 0 B A C B = B B C A
13 3 4 8 11 12 syl22anc A B C B A C B = B B C A
14 2 9 dividd B B B = 1
15 14 oveq1d B B B C A = 1 C A
16 15 3ad2ant2 A B C B B C A = 1 C A
17 divcl C A A 0 C A
18 17 3expb C A A 0 C A
19 7 18 sylan2 C A C A
20 19 ancoms A C C A
21 20 mulid2d A C 1 C A = C A
22 21 3adant2 A B C 1 C A = C A
23 13 16 22 3eqtrd A B C B A C B = C A
24 23 eleq1d A B C B A C B C A
25 1 24 syl5ib A B C B A C B C A
26 25 imp A B C B A C B C A