Metamath Proof Explorer


Theorem nnind

Description: Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl for an example of its use. See nn0ind for induction on nonnegative integers and uzind , uzind4 for induction on an arbitrary upper set of integers. See indstr for strong induction. See also nnindALT . This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997) (Revised by Mario Carneiro, 16-Jun-2013)

Ref Expression
Hypotheses nnind.1 x=1φψ
nnind.2 x=yφχ
nnind.3 x=y+1φθ
nnind.4 x=Aφτ
nnind.5 ψ
nnind.6 yχθ
Assertion nnind Aτ

Proof

Step Hyp Ref Expression
1 nnind.1 x=1φψ
2 nnind.2 x=yφχ
3 nnind.3 x=y+1φθ
4 nnind.4 x=Aφτ
5 nnind.5 ψ
6 nnind.6 yχθ
7 1nn 1
8 1 elrab 1x|φ1ψ
9 7 5 8 mpbir2an 1x|φ
10 elrabi yx|φy
11 peano2nn yy+1
12 11 a1d yyy+1
13 12 6 anim12d yyχy+1θ
14 2 elrab yx|φyχ
15 3 elrab y+1x|φy+1θ
16 13 14 15 3imtr4g yyx|φy+1x|φ
17 10 16 mpcom yx|φy+1x|φ
18 17 rgen yx|φy+1x|φ
19 peano5nni 1x|φyx|φy+1x|φx|φ
20 9 18 19 mp2an x|φ
21 20 sseli AAx|φ
22 4 elrab Ax|φAτ
23 21 22 sylib AAτ
24 23 simprd Aτ