Metamath Proof Explorer


Theorem noetalem2

Description: Lemma for noeta . The full statement of the theorem with hypotheses in place. (Contributed by Scott Fenton, 10-Aug-2024)

Ref Expression
Hypotheses noetalem2.1 S=ifxAyA¬x<syιxA|yA¬x<sydomιxA|yA¬x<sy2𝑜gy|uAydomuvA¬v<suusucy=vsucyιx|uAgdomuvA¬v<suusucg=vsucgug=x
noetalem2.2 T=ifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
Assertion noetalem2 ANoAVBNoBWaAbBa<sbOOnbdayABOcNoaAa<scbBc<sbbdaycO

Proof

Step Hyp Ref Expression
1 noetalem2.1 S=ifxAyA¬x<syιxA|yA¬x<sydomιxA|yA¬x<sy2𝑜gy|uAydomuvA¬v<suusucy=vsucyιx|uAgdomuvA¬v<suusucg=vsucgug=x
2 noetalem2.2 T=ifxByB¬y<sxιxB|yB¬y<sxdomιxB|yB¬y<sx1𝑜gy|uBydomuvB¬u<svusucy=vsucyιx|uBgdomuvB¬u<svusucg=vsucgug=x
3 elex AVAV
4 3 anim2i ANoAVANoAV
5 elex BWBV
6 5 anim2i BNoBWBNoBV
7 id aAbBa<sbaAbBa<sb
8 4 6 7 3anim123i ANoAVBNoBWaAbBa<sbANoAVBNoBVaAbBa<sb
9 eqid SsucbdayBdomS×1𝑜=SsucbdayBdomS×1𝑜
10 eqid TsucbdayAdomT×2𝑜=TsucbdayAdomT×2𝑜
11 1 2 9 10 noetalem1 ANoAVBNoBVaAbBa<sbOOnbdayABOSNoaAa<sSbBS<sbbdaySOTNoaAa<sTbBT<sbbdayTO
12 breq2 c=Sa<sca<sS
13 12 ralbidv c=SaAa<scaAa<sS
14 breq1 c=Sc<sbS<sb
15 14 ralbidv c=SbBc<sbbBS<sb
16 fveq2 c=Sbdayc=bdayS
17 16 sseq1d c=SbdaycObdaySO
18 13 15 17 3anbi123d c=SaAa<scbBc<sbbdaycOaAa<sSbBS<sbbdaySO
19 18 rspcev SNoaAa<sSbBS<sbbdaySOcNoaAa<scbBc<sbbdaycO
20 breq2 c=Ta<sca<sT
21 20 ralbidv c=TaAa<scaAa<sT
22 breq1 c=Tc<sbT<sb
23 22 ralbidv c=TbBc<sbbBT<sb
24 fveq2 c=Tbdayc=bdayT
25 24 sseq1d c=TbdaycObdayTO
26 21 23 25 3anbi123d c=TaAa<scbBc<sbbdaycOaAa<sTbBT<sbbdayTO
27 26 rspcev TNoaAa<sTbBT<sbbdayTOcNoaAa<scbBc<sbbdaycO
28 19 27 jaoi SNoaAa<sSbBS<sbbdaySOTNoaAa<sTbBT<sbbdayTOcNoaAa<scbBc<sbbdaycO
29 11 28 syl ANoAVBNoBVaAbBa<sbOOnbdayABOcNoaAa<scbBc<sbbdaycO
30 8 29 sylan ANoAVBNoBWaAbBa<sbOOnbdayABOcNoaAa<scbBc<sbbdaycO