Metamath Proof Explorer


Theorem noextend

Description: Extending a surreal by one sign value results in a new surreal. (Contributed by Scott Fenton, 22-Nov-2021)

Ref Expression
Hypothesis noextend.1 X 1 𝑜 2 𝑜
Assertion noextend A No A dom A X No

Proof

Step Hyp Ref Expression
1 noextend.1 X 1 𝑜 2 𝑜
2 nofun A No Fun A
3 dmexg A No dom A V
4 funsng dom A V X 1 𝑜 2 𝑜 Fun dom A X
5 3 1 4 sylancl A No Fun dom A X
6 1 elexi X V
7 6 dmsnop dom dom A X = dom A
8 7 ineq2i dom A dom dom A X = dom A dom A
9 nodmord A No Ord dom A
10 ordirr Ord dom A ¬ dom A dom A
11 9 10 syl A No ¬ dom A dom A
12 disjsn dom A dom A = ¬ dom A dom A
13 11 12 sylibr A No dom A dom A =
14 8 13 syl5eq A No dom A dom dom A X =
15 funun Fun A Fun dom A X dom A dom dom A X = Fun A dom A X
16 2 5 14 15 syl21anc A No Fun A dom A X
17 7 uneq2i dom A dom dom A X = dom A dom A
18 dmun dom A dom A X = dom A dom dom A X
19 df-suc suc dom A = dom A dom A
20 17 18 19 3eqtr4i dom A dom A X = suc dom A
21 nodmon A No dom A On
22 suceloni dom A On suc dom A On
23 21 22 syl A No suc dom A On
24 20 23 eqeltrid A No dom A dom A X On
25 rnun ran A dom A X = ran A ran dom A X
26 rnsnopg dom A V ran dom A X = X
27 3 26 syl A No ran dom A X = X
28 27 uneq2d A No ran A ran dom A X = ran A X
29 25 28 syl5eq A No ran A dom A X = ran A X
30 norn A No ran A 1 𝑜 2 𝑜
31 snssi X 1 𝑜 2 𝑜 X 1 𝑜 2 𝑜
32 1 31 mp1i A No X 1 𝑜 2 𝑜
33 30 32 unssd A No ran A X 1 𝑜 2 𝑜
34 29 33 eqsstrd A No ran A dom A X 1 𝑜 2 𝑜
35 elno2 A dom A X No Fun A dom A X dom A dom A X On ran A dom A X 1 𝑜 2 𝑜
36 16 24 34 35 syl3anbrc A No A dom A X No