Metamath Proof Explorer


Theorem norm-ii-i

Description: Triangle inequality for norms. Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 11-Aug-1999) (New usage is discouraged.)

Ref Expression
Hypotheses norm-ii.1 A
norm-ii.2 B
Assertion norm-ii-i normA+BnormA+normB

Proof

Step Hyp Ref Expression
1 norm-ii.1 A
2 norm-ii.2 B
3 1re 1
4 ax-1cn 1
5 4 cjrebi 11=1
6 3 5 mpbi 1=1
7 6 oveq1i 1BihA=1BihA
8 2 1 hicli BihA
9 8 mullidi 1BihA=BihA
10 7 9 eqtri 1BihA=BihA
11 1 2 hicli AihB
12 11 mullidi 1AihB=AihB
13 10 12 oveq12i 1BihA+1AihB=BihA+AihB
14 abs1 1=1
15 4 2 1 14 normlem7 1BihA+1AihB2AihABihB
16 13 15 eqbrtrri BihA+AihB2AihABihB
17 eqid 1BihA+1AihB=1BihA+1AihB
18 4 2 1 17 normlem2 1BihA+1AihB
19 4 cjcli 1
20 19 8 mulcli 1BihA
21 4 11 mulcli 1AihB
22 20 21 addcli 1BihA+1AihB
23 22 negrebi 1BihA+1AihB1BihA+1AihB
24 18 23 mpbi 1BihA+1AihB
25 13 24 eqeltrri BihA+AihB
26 2re 2
27 hiidge0 A0AihA
28 1 27 ax-mp 0AihA
29 hiidrcl AAihA
30 1 29 ax-mp AihA
31 30 sqrtcli 0AihAAihA
32 28 31 ax-mp AihA
33 hiidge0 B0BihB
34 2 33 ax-mp 0BihB
35 hiidrcl BBihB
36 2 35 ax-mp BihB
37 36 sqrtcli 0BihBBihB
38 34 37 ax-mp BihB
39 32 38 remulcli AihABihB
40 26 39 remulcli 2AihABihB
41 30 36 readdcli AihA+BihB
42 25 40 41 leadd2i BihA+AihB2AihABihBAihA+BihB+BihA+AihBAihA+BihB+2AihABihB
43 16 42 mpbi AihA+BihB+BihA+AihBAihA+BihB+2AihABihB
44 1 2 1 2 normlem8 A+BihA+B=AihA+BihB+AihB+BihA
45 11 8 addcomi AihB+BihA=BihA+AihB
46 45 oveq2i AihA+BihB+AihB+BihA=AihA+BihB+BihA+AihB
47 44 46 eqtri A+BihA+B=AihA+BihB+BihA+AihB
48 32 recni AihA
49 38 recni BihB
50 48 49 binom2i AihA+BihB2=AihA2+2AihABihB+BihB2
51 48 sqcli AihA2
52 2cn 2
53 48 49 mulcli AihABihB
54 52 53 mulcli 2AihABihB
55 49 sqcli BihB2
56 51 54 55 add32i AihA2+2AihABihB+BihB2=AihA2+BihB2+2AihABihB
57 30 sqsqrti 0AihAAihA2=AihA
58 28 57 ax-mp AihA2=AihA
59 36 sqsqrti 0BihBBihB2=BihB
60 34 59 ax-mp BihB2=BihB
61 58 60 oveq12i AihA2+BihB2=AihA+BihB
62 61 oveq1i AihA2+BihB2+2AihABihB=AihA+BihB+2AihABihB
63 50 56 62 3eqtri AihA+BihB2=AihA+BihB+2AihABihB
64 43 47 63 3brtr4i A+BihA+BAihA+BihB2
65 1 2 hvaddcli A+B
66 hiidge0 A+B0A+BihA+B
67 65 66 ax-mp 0A+BihA+B
68 32 38 readdcli AihA+BihB
69 68 sqge0i 0AihA+BihB2
70 hiidrcl A+BA+BihA+B
71 65 70 ax-mp A+BihA+B
72 68 resqcli AihA+BihB2
73 71 72 sqrtlei 0A+BihA+B0AihA+BihB2A+BihA+BAihA+BihB2A+BihA+BAihA+BihB2
74 67 69 73 mp2an A+BihA+BAihA+BihB2A+BihA+BAihA+BihB2
75 64 74 mpbi A+BihA+BAihA+BihB2
76 30 sqrtge0i 0AihA0AihA
77 28 76 ax-mp 0AihA
78 36 sqrtge0i 0BihB0BihB
79 34 78 ax-mp 0BihB
80 32 38 addge0i 0AihA0BihB0AihA+BihB
81 77 79 80 mp2an 0AihA+BihB
82 68 sqrtsqi 0AihA+BihBAihA+BihB2=AihA+BihB
83 81 82 ax-mp AihA+BihB2=AihA+BihB
84 75 83 breqtri A+BihA+BAihA+BihB
85 normval A+BnormA+B=A+BihA+B
86 65 85 ax-mp normA+B=A+BihA+B
87 normval AnormA=AihA
88 1 87 ax-mp normA=AihA
89 normval BnormB=BihB
90 2 89 ax-mp normB=BihB
91 88 90 oveq12i normA+normB=AihA+BihB
92 84 86 91 3brtr4i normA+BnormA+normB