Metamath Proof Explorer


Theorem nosep1o

Description: If the value of a surreal at a separator is 1o then the surreal is lesser. (Contributed by Scott Fenton, 7-Dec-2021)

Ref Expression
Assertion nosep1o ANoBNoABAxOn|AxBx=1𝑜A<sB

Proof

Step Hyp Ref Expression
1 simpr ANoBNoABAxOn|AxBx=1𝑜AxOn|AxBx=1𝑜
2 nosepne ANoBNoABAxOn|AxBxBxOn|AxBx
3 2 adantr ANoBNoABAxOn|AxBx=1𝑜AxOn|AxBxBxOn|AxBx
4 1 3 eqnetrrd ANoBNoABAxOn|AxBx=1𝑜1𝑜BxOn|AxBx
5 4 necomd ANoBNoABAxOn|AxBx=1𝑜BxOn|AxBx1𝑜
6 5 neneqd ANoBNoABAxOn|AxBx=1𝑜¬BxOn|AxBx=1𝑜
7 simpl2 ANoBNoABAxOn|AxBx=1𝑜BNo
8 nofv BNoBxOn|AxBx=BxOn|AxBx=1𝑜BxOn|AxBx=2𝑜
9 7 8 syl ANoBNoABAxOn|AxBx=1𝑜BxOn|AxBx=BxOn|AxBx=1𝑜BxOn|AxBx=2𝑜
10 3orel2 ¬BxOn|AxBx=1𝑜BxOn|AxBx=BxOn|AxBx=1𝑜BxOn|AxBx=2𝑜BxOn|AxBx=BxOn|AxBx=2𝑜
11 6 9 10 sylc ANoBNoABAxOn|AxBx=1𝑜BxOn|AxBx=BxOn|AxBx=2𝑜
12 eqid 1𝑜=1𝑜
13 11 12 jctil ANoBNoABAxOn|AxBx=1𝑜1𝑜=1𝑜BxOn|AxBx=BxOn|AxBx=2𝑜
14 andi 1𝑜=1𝑜BxOn|AxBx=BxOn|AxBx=2𝑜1𝑜=1𝑜BxOn|AxBx=1𝑜=1𝑜BxOn|AxBx=2𝑜
15 13 14 sylib ANoBNoABAxOn|AxBx=1𝑜1𝑜=1𝑜BxOn|AxBx=1𝑜=1𝑜BxOn|AxBx=2𝑜
16 3mix1 1𝑜=1𝑜BxOn|AxBx=1𝑜=1𝑜BxOn|AxBx=1𝑜=1𝑜BxOn|AxBx=2𝑜1𝑜=BxOn|AxBx=2𝑜
17 3mix2 1𝑜=1𝑜BxOn|AxBx=2𝑜1𝑜=1𝑜BxOn|AxBx=1𝑜=1𝑜BxOn|AxBx=2𝑜1𝑜=BxOn|AxBx=2𝑜
18 16 17 jaoi 1𝑜=1𝑜BxOn|AxBx=1𝑜=1𝑜BxOn|AxBx=2𝑜1𝑜=1𝑜BxOn|AxBx=1𝑜=1𝑜BxOn|AxBx=2𝑜1𝑜=BxOn|AxBx=2𝑜
19 15 18 syl ANoBNoABAxOn|AxBx=1𝑜1𝑜=1𝑜BxOn|AxBx=1𝑜=1𝑜BxOn|AxBx=2𝑜1𝑜=BxOn|AxBx=2𝑜
20 1oex 1𝑜V
21 fvex BxOn|AxBxV
22 20 21 brtp 1𝑜1𝑜1𝑜2𝑜2𝑜BxOn|AxBx1𝑜=1𝑜BxOn|AxBx=1𝑜=1𝑜BxOn|AxBx=2𝑜1𝑜=BxOn|AxBx=2𝑜
23 19 22 sylibr ANoBNoABAxOn|AxBx=1𝑜1𝑜1𝑜1𝑜2𝑜2𝑜BxOn|AxBx
24 1 23 eqbrtrd ANoBNoABAxOn|AxBx=1𝑜AxOn|AxBx1𝑜1𝑜2𝑜2𝑜BxOn|AxBx
25 simpl1 ANoBNoABAxOn|AxBx=1𝑜ANo
26 sltval2 ANoBNoA<sBAxOn|AxBx1𝑜1𝑜2𝑜2𝑜BxOn|AxBx
27 25 7 26 syl2anc ANoBNoABAxOn|AxBx=1𝑜A<sBAxOn|AxBx1𝑜1𝑜2𝑜2𝑜BxOn|AxBx
28 24 27 mpbird ANoBNoABAxOn|AxBx=1𝑜A<sB