Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o ) -> ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o ) |
2 |
|
nosepne |
|- ( ( A e. No /\ B e. No /\ A =/= B ) -> ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) =/= ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) ) |
3 |
2
|
adantr |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o ) -> ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) =/= ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) ) |
4 |
1 3
|
eqnetrrd |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o ) -> 1o =/= ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) ) |
5 |
4
|
necomd |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o ) -> ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) =/= 1o ) |
6 |
5
|
neneqd |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o ) -> -. ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o ) |
7 |
|
simpl2 |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o ) -> B e. No ) |
8 |
|
nofv |
|- ( B e. No -> ( ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) \/ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o \/ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) |
9 |
7 8
|
syl |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o ) -> ( ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) \/ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o \/ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) |
10 |
|
3orel2 |
|- ( -. ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o -> ( ( ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) \/ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o \/ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) -> ( ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) \/ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) ) |
11 |
6 9 10
|
sylc |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o ) -> ( ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) \/ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) |
12 |
|
eqid |
|- 1o = 1o |
13 |
11 12
|
jctil |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o ) -> ( 1o = 1o /\ ( ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) \/ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) ) |
14 |
|
andi |
|- ( ( 1o = 1o /\ ( ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) \/ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) <-> ( ( 1o = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) \/ ( 1o = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) ) |
15 |
13 14
|
sylib |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o ) -> ( ( 1o = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) \/ ( 1o = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) ) |
16 |
|
3mix1 |
|- ( ( 1o = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) -> ( ( 1o = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) \/ ( 1o = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) \/ ( 1o = (/) /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) ) |
17 |
|
3mix2 |
|- ( ( 1o = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) -> ( ( 1o = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) \/ ( 1o = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) \/ ( 1o = (/) /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) ) |
18 |
16 17
|
jaoi |
|- ( ( ( 1o = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) \/ ( 1o = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) -> ( ( 1o = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) \/ ( 1o = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) \/ ( 1o = (/) /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) ) |
19 |
15 18
|
syl |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o ) -> ( ( 1o = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) \/ ( 1o = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) \/ ( 1o = (/) /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) ) |
20 |
|
1oex |
|- 1o e. _V |
21 |
|
fvex |
|- ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) e. _V |
22 |
20 21
|
brtp |
|- ( 1o { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) <-> ( ( 1o = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = (/) ) \/ ( 1o = 1o /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) \/ ( 1o = (/) /\ ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 2o ) ) ) |
23 |
19 22
|
sylibr |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o ) -> 1o { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) ) |
24 |
1 23
|
eqbrtrd |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o ) -> ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) ) |
25 |
|
simpl1 |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o ) -> A e. No ) |
26 |
|
sltval2 |
|- ( ( A e. No /\ B e. No ) -> ( A ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) ) ) |
27 |
25 7 26
|
syl2anc |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o ) -> ( A ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( B ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) ) ) |
28 |
24 27
|
mpbird |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( A ` x ) =/= ( B ` x ) } ) = 1o ) -> A |