Metamath Proof Explorer


Theorem nosep2o

Description: If the value of a surreal at a separator is 2o then the surreal is greater. (Contributed by Scott Fenton, 7-Dec-2021)

Ref Expression
Assertion nosep2o
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> B 

Proof

Step Hyp Ref Expression
1 simp2
 |-  ( ( A e. No /\ B e. No /\ A =/= B ) -> B e. No )
2 simp1
 |-  ( ( A e. No /\ B e. No /\ A =/= B ) -> A e. No )
3 simp3
 |-  ( ( A e. No /\ B e. No /\ A =/= B ) -> A =/= B )
4 3 necomd
 |-  ( ( A e. No /\ B e. No /\ A =/= B ) -> B =/= A )
5 nosepne
 |-  ( ( B e. No /\ A e. No /\ B =/= A ) -> ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) =/= ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) )
6 1 2 4 5 syl3anc
 |-  ( ( A e. No /\ B e. No /\ A =/= B ) -> ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) =/= ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) )
7 6 adantr
 |-  ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) =/= ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) )
8 simpr
 |-  ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o )
9 7 8 neeqtrd
 |-  ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) =/= 2o )
10 9 neneqd
 |-  ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> -. ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o )
11 simpl2
 |-  ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> B e. No )
12 nofv
 |-  ( B e. No -> ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) \/ ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o \/ ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) )
13 11 12 syl
 |-  ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) \/ ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o \/ ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) )
14 3orel3
 |-  ( -. ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o -> ( ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) \/ ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o \/ ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) \/ ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o ) ) )
15 10 13 14 sylc
 |-  ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) \/ ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o ) )
16 15 orcomd
 |-  ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o \/ ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) ) )
17 16 8 jca
 |-  ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> ( ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o \/ ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) )
18 andir
 |-  ( ( ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o \/ ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) <-> ( ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) \/ ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) ) )
19 17 18 sylib
 |-  ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> ( ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) \/ ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) ) )
20 3mix2
 |-  ( ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> ( ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) ) \/ ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) \/ ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) ) )
21 3mix3
 |-  ( ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> ( ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) ) \/ ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) \/ ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) ) )
22 20 21 jaoi
 |-  ( ( ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) \/ ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) ) -> ( ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) ) \/ ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) \/ ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) ) )
23 19 22 syl
 |-  ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> ( ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) ) \/ ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) \/ ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) ) )
24 fvex
 |-  ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) e. _V
25 fvex
 |-  ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) e. _V
26 24 25 brtp
 |-  ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) <-> ( ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) ) \/ ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) \/ ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) ) )
27 23 26 sylibr
 |-  ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) )
28 simpl1
 |-  ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> A e. No )
29 sltval2
 |-  ( ( B e. No /\ A e. No ) -> ( B  ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) ) )
30 11 28 29 syl2anc
 |-  ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> ( B  ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) ) )
31 27 30 mpbird
 |-  ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> B