Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
|- ( ( A e. No /\ B e. No /\ A =/= B ) -> B e. No ) |
2 |
|
simp1 |
|- ( ( A e. No /\ B e. No /\ A =/= B ) -> A e. No ) |
3 |
|
simp3 |
|- ( ( A e. No /\ B e. No /\ A =/= B ) -> A =/= B ) |
4 |
3
|
necomd |
|- ( ( A e. No /\ B e. No /\ A =/= B ) -> B =/= A ) |
5 |
|
nosepne |
|- ( ( B e. No /\ A e. No /\ B =/= A ) -> ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) =/= ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) ) |
6 |
1 2 4 5
|
syl3anc |
|- ( ( A e. No /\ B e. No /\ A =/= B ) -> ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) =/= ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) ) |
7 |
6
|
adantr |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) =/= ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) ) |
8 |
|
simpr |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) |
9 |
7 8
|
neeqtrd |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) =/= 2o ) |
10 |
9
|
neneqd |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> -. ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) |
11 |
|
simpl2 |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> B e. No ) |
12 |
|
nofv |
|- ( B e. No -> ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) \/ ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o \/ ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) ) |
13 |
11 12
|
syl |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) \/ ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o \/ ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) ) |
14 |
|
3orel3 |
|- ( -. ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o -> ( ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) \/ ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o \/ ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) \/ ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o ) ) ) |
15 |
10 13 14
|
sylc |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) \/ ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o ) ) |
16 |
15
|
orcomd |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o \/ ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) ) ) |
17 |
16 8
|
jca |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> ( ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o \/ ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) ) |
18 |
|
andir |
|- ( ( ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o \/ ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) <-> ( ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) \/ ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) ) ) |
19 |
17 18
|
sylib |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> ( ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) \/ ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) ) ) |
20 |
|
3mix2 |
|- ( ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> ( ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) ) \/ ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) \/ ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) ) ) |
21 |
|
3mix3 |
|- ( ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> ( ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) ) \/ ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) \/ ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) ) ) |
22 |
20 21
|
jaoi |
|- ( ( ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) \/ ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) ) -> ( ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) ) \/ ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) \/ ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) ) ) |
23 |
19 22
|
syl |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> ( ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) ) \/ ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) \/ ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) ) ) |
24 |
|
fvex |
|- ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) e. _V |
25 |
|
fvex |
|- ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) e. _V |
26 |
24 25
|
brtp |
|- ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) <-> ( ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) ) \/ ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 1o /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) \/ ( ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = (/) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) ) ) |
27 |
23 26
|
sylibr |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) ) |
28 |
|
simpl1 |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> A e. No ) |
29 |
|
sltval2 |
|- ( ( B e. No /\ A e. No ) -> ( B ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) ) ) |
30 |
11 28 29
|
syl2anc |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> ( B ( B ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) ) ) |
31 |
27 30
|
mpbird |
|- ( ( ( A e. No /\ B e. No /\ A =/= B ) /\ ( A ` |^| { x e. On | ( B ` x ) =/= ( A ` x ) } ) = 2o ) -> B |