Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ No ) |
2 |
|
simp1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ No ) |
3 |
|
simp3 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ≠ 𝐵 ) |
4 |
3
|
necomd |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ≠ 𝐴 ) |
5 |
|
nosepne |
⊢ ( ( 𝐵 ∈ No ∧ 𝐴 ∈ No ∧ 𝐵 ≠ 𝐴 ) → ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) ≠ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) ) |
6 |
1 2 4 5
|
syl3anc |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) → ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) ≠ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) ) |
7 |
6
|
adantr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) → ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) ≠ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) ) |
8 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) → ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) |
9 |
7 8
|
neeqtrd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) → ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) ≠ 2o ) |
10 |
9
|
neneqd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) → ¬ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) |
11 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) → 𝐵 ∈ No ) |
12 |
|
nofv |
⊢ ( 𝐵 ∈ No → ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = ∅ ∨ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 1o ∨ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) ) |
13 |
11 12
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) → ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = ∅ ∨ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 1o ∨ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) ) |
14 |
|
3orel3 |
⊢ ( ¬ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o → ( ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = ∅ ∨ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 1o ∨ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) → ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = ∅ ∨ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 1o ) ) ) |
15 |
10 13 14
|
sylc |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) → ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = ∅ ∨ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 1o ) ) |
16 |
15
|
orcomd |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) → ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 1o ∨ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = ∅ ) ) |
17 |
16 8
|
jca |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) → ( ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 1o ∨ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = ∅ ) ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) ) |
18 |
|
andir |
⊢ ( ( ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 1o ∨ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = ∅ ) ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) ↔ ( ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) ∨ ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = ∅ ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) ) ) |
19 |
17 18
|
sylib |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) → ( ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) ∨ ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = ∅ ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) ) ) |
20 |
|
3mix2 |
⊢ ( ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) → ( ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = ∅ ) ∨ ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) ∨ ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = ∅ ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) ) ) |
21 |
|
3mix3 |
⊢ ( ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = ∅ ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) → ( ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = ∅ ) ∨ ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) ∨ ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = ∅ ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) ) ) |
22 |
20 21
|
jaoi |
⊢ ( ( ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) ∨ ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = ∅ ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) ) → ( ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = ∅ ) ∨ ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) ∨ ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = ∅ ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) ) ) |
23 |
19 22
|
syl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) → ( ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = ∅ ) ∨ ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) ∨ ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = ∅ ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) ) ) |
24 |
|
fvex |
⊢ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) ∈ V |
25 |
|
fvex |
⊢ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) ∈ V |
26 |
24 25
|
brtp |
⊢ ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) ↔ ( ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = ∅ ) ∨ ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 1o ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) ∨ ( ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = ∅ ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) ) ) |
27 |
23 26
|
sylibr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) → ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) ) |
28 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) → 𝐴 ∈ No ) |
29 |
|
sltval2 |
⊢ ( ( 𝐵 ∈ No ∧ 𝐴 ∈ No ) → ( 𝐵 <s 𝐴 ↔ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) ) ) |
30 |
11 28 29
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) → ( 𝐵 <s 𝐴 ↔ ( 𝐵 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) { 〈 1o , ∅ 〉 , 〈 1o , 2o 〉 , 〈 ∅ , 2o 〉 } ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) ) ) |
31 |
27 30
|
mpbird |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐴 ‘ ∩ { 𝑥 ∈ On ∣ ( 𝐵 ‘ 𝑥 ) ≠ ( 𝐴 ‘ 𝑥 ) } ) = 2o ) → 𝐵 <s 𝐴 ) |