Metamath Proof Explorer


Theorem nosep2o

Description: If the value of a surreal at a separator is 2o then the surreal is greater. (Contributed by Scott Fenton, 7-Dec-2021)

Ref Expression
Assertion nosep2o ANoBNoABAxOn|BxAx=2𝑜B<sA

Proof

Step Hyp Ref Expression
1 simp2 ANoBNoABBNo
2 simp1 ANoBNoABANo
3 simp3 ANoBNoABAB
4 3 necomd ANoBNoABBA
5 nosepne BNoANoBABxOn|BxAxAxOn|BxAx
6 1 2 4 5 syl3anc ANoBNoABBxOn|BxAxAxOn|BxAx
7 6 adantr ANoBNoABAxOn|BxAx=2𝑜BxOn|BxAxAxOn|BxAx
8 simpr ANoBNoABAxOn|BxAx=2𝑜AxOn|BxAx=2𝑜
9 7 8 neeqtrd ANoBNoABAxOn|BxAx=2𝑜BxOn|BxAx2𝑜
10 9 neneqd ANoBNoABAxOn|BxAx=2𝑜¬BxOn|BxAx=2𝑜
11 simpl2 ANoBNoABAxOn|BxAx=2𝑜BNo
12 nofv BNoBxOn|BxAx=BxOn|BxAx=1𝑜BxOn|BxAx=2𝑜
13 11 12 syl ANoBNoABAxOn|BxAx=2𝑜BxOn|BxAx=BxOn|BxAx=1𝑜BxOn|BxAx=2𝑜
14 3orel3 ¬BxOn|BxAx=2𝑜BxOn|BxAx=BxOn|BxAx=1𝑜BxOn|BxAx=2𝑜BxOn|BxAx=BxOn|BxAx=1𝑜
15 10 13 14 sylc ANoBNoABAxOn|BxAx=2𝑜BxOn|BxAx=BxOn|BxAx=1𝑜
16 15 orcomd ANoBNoABAxOn|BxAx=2𝑜BxOn|BxAx=1𝑜BxOn|BxAx=
17 16 8 jca ANoBNoABAxOn|BxAx=2𝑜BxOn|BxAx=1𝑜BxOn|BxAx=AxOn|BxAx=2𝑜
18 andir BxOn|BxAx=1𝑜BxOn|BxAx=AxOn|BxAx=2𝑜BxOn|BxAx=1𝑜AxOn|BxAx=2𝑜BxOn|BxAx=AxOn|BxAx=2𝑜
19 17 18 sylib ANoBNoABAxOn|BxAx=2𝑜BxOn|BxAx=1𝑜AxOn|BxAx=2𝑜BxOn|BxAx=AxOn|BxAx=2𝑜
20 3mix2 BxOn|BxAx=1𝑜AxOn|BxAx=2𝑜BxOn|BxAx=1𝑜AxOn|BxAx=BxOn|BxAx=1𝑜AxOn|BxAx=2𝑜BxOn|BxAx=AxOn|BxAx=2𝑜
21 3mix3 BxOn|BxAx=AxOn|BxAx=2𝑜BxOn|BxAx=1𝑜AxOn|BxAx=BxOn|BxAx=1𝑜AxOn|BxAx=2𝑜BxOn|BxAx=AxOn|BxAx=2𝑜
22 20 21 jaoi BxOn|BxAx=1𝑜AxOn|BxAx=2𝑜BxOn|BxAx=AxOn|BxAx=2𝑜BxOn|BxAx=1𝑜AxOn|BxAx=BxOn|BxAx=1𝑜AxOn|BxAx=2𝑜BxOn|BxAx=AxOn|BxAx=2𝑜
23 19 22 syl ANoBNoABAxOn|BxAx=2𝑜BxOn|BxAx=1𝑜AxOn|BxAx=BxOn|BxAx=1𝑜AxOn|BxAx=2𝑜BxOn|BxAx=AxOn|BxAx=2𝑜
24 fvex BxOn|BxAxV
25 fvex AxOn|BxAxV
26 24 25 brtp BxOn|BxAx1𝑜1𝑜2𝑜2𝑜AxOn|BxAxBxOn|BxAx=1𝑜AxOn|BxAx=BxOn|BxAx=1𝑜AxOn|BxAx=2𝑜BxOn|BxAx=AxOn|BxAx=2𝑜
27 23 26 sylibr ANoBNoABAxOn|BxAx=2𝑜BxOn|BxAx1𝑜1𝑜2𝑜2𝑜AxOn|BxAx
28 simpl1 ANoBNoABAxOn|BxAx=2𝑜ANo
29 sltval2 BNoANoB<sABxOn|BxAx1𝑜1𝑜2𝑜2𝑜AxOn|BxAx
30 11 28 29 syl2anc ANoBNoABAxOn|BxAx=2𝑜B<sABxOn|BxAx1𝑜1𝑜2𝑜2𝑜AxOn|BxAx
31 27 30 mpbird ANoBNoABAxOn|BxAx=2𝑜B<sA