Description: There is no ring homomorphism from the zero ring into a nonzero ring. (Contributed by AV, 18-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | nrhmzr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | 1 2 3 | 0ring1eq0 | |
5 | 4 | adantr | |
6 | 5 | adantr | |
7 | 6 | eqcomd | |
8 | 7 | fveq2d | |
9 | eqid | |
|
10 | 3 9 | rhm1 | |
11 | 10 | adantl | |
12 | 8 11 | eqtrd | |
13 | rhmghm | |
|
14 | 13 | adantl | |
15 | eqid | |
|
16 | 2 15 | ghmid | |
17 | 14 16 | syl | |
18 | 12 17 | jca | |
19 | 18 | ralrimiva | |
20 | 9 15 | nzrnz | |
21 | 20 | necomd | |
22 | 21 | adantl | |
23 | 22 | adantr | |
24 | neeq1 | |
|
25 | 24 | adantl | |
26 | 23 25 | mpbird | |
27 | 26 | orcd | |
28 | 27 | expcom | |
29 | olc | |
|
30 | 29 | a1d | |
31 | 28 30 | pm2.61ine | |
32 | neorian | |
|
33 | 31 32 | sylib | |
34 | con3 | |
|
35 | 33 34 | syl5com | |
36 | 35 | alimdv | |
37 | df-ral | |
|
38 | eq0 | |
|
39 | 36 37 38 | 3imtr4g | |
40 | 19 39 | mpd | |