Metamath Proof Explorer


Theorem nrhmzr

Description: There is no ring homomorphism from the zero ring into a nonzero ring. (Contributed by AV, 18-Apr-2020)

Ref Expression
Assertion nrhmzr Z Ring NzRing R NzRing Z RingHom R =

Proof

Step Hyp Ref Expression
1 eqid Base Z = Base Z
2 eqid 0 Z = 0 Z
3 eqid 1 Z = 1 Z
4 1 2 3 0ring1eq0 Z Ring NzRing 1 Z = 0 Z
5 4 adantr Z Ring NzRing R NzRing 1 Z = 0 Z
6 5 adantr Z Ring NzRing R NzRing f Z RingHom R 1 Z = 0 Z
7 6 eqcomd Z Ring NzRing R NzRing f Z RingHom R 0 Z = 1 Z
8 7 fveq2d Z Ring NzRing R NzRing f Z RingHom R f 0 Z = f 1 Z
9 eqid 1 R = 1 R
10 3 9 rhm1 f Z RingHom R f 1 Z = 1 R
11 10 adantl Z Ring NzRing R NzRing f Z RingHom R f 1 Z = 1 R
12 8 11 eqtrd Z Ring NzRing R NzRing f Z RingHom R f 0 Z = 1 R
13 rhmghm f Z RingHom R f Z GrpHom R
14 13 adantl Z Ring NzRing R NzRing f Z RingHom R f Z GrpHom R
15 eqid 0 R = 0 R
16 2 15 ghmid f Z GrpHom R f 0 Z = 0 R
17 14 16 syl Z Ring NzRing R NzRing f Z RingHom R f 0 Z = 0 R
18 12 17 jca Z Ring NzRing R NzRing f Z RingHom R f 0 Z = 1 R f 0 Z = 0 R
19 18 ralrimiva Z Ring NzRing R NzRing f Z RingHom R f 0 Z = 1 R f 0 Z = 0 R
20 9 15 nzrnz R NzRing 1 R 0 R
21 20 necomd R NzRing 0 R 1 R
22 21 adantl Z Ring NzRing R NzRing 0 R 1 R
23 22 adantr Z Ring NzRing R NzRing f 0 Z = 0 R 0 R 1 R
24 neeq1 f 0 Z = 0 R f 0 Z 1 R 0 R 1 R
25 24 adantl Z Ring NzRing R NzRing f 0 Z = 0 R f 0 Z 1 R 0 R 1 R
26 23 25 mpbird Z Ring NzRing R NzRing f 0 Z = 0 R f 0 Z 1 R
27 26 orcd Z Ring NzRing R NzRing f 0 Z = 0 R f 0 Z 1 R f 0 Z 0 R
28 27 expcom f 0 Z = 0 R Z Ring NzRing R NzRing f 0 Z 1 R f 0 Z 0 R
29 olc f 0 Z 0 R f 0 Z 1 R f 0 Z 0 R
30 29 a1d f 0 Z 0 R Z Ring NzRing R NzRing f 0 Z 1 R f 0 Z 0 R
31 28 30 pm2.61ine Z Ring NzRing R NzRing f 0 Z 1 R f 0 Z 0 R
32 neorian f 0 Z 1 R f 0 Z 0 R ¬ f 0 Z = 1 R f 0 Z = 0 R
33 31 32 sylib Z Ring NzRing R NzRing ¬ f 0 Z = 1 R f 0 Z = 0 R
34 con3 f Z RingHom R f 0 Z = 1 R f 0 Z = 0 R ¬ f 0 Z = 1 R f 0 Z = 0 R ¬ f Z RingHom R
35 33 34 syl5com Z Ring NzRing R NzRing f Z RingHom R f 0 Z = 1 R f 0 Z = 0 R ¬ f Z RingHom R
36 35 alimdv Z Ring NzRing R NzRing f f Z RingHom R f 0 Z = 1 R f 0 Z = 0 R f ¬ f Z RingHom R
37 df-ral f Z RingHom R f 0 Z = 1 R f 0 Z = 0 R f f Z RingHom R f 0 Z = 1 R f 0 Z = 0 R
38 eq0 Z RingHom R = f ¬ f Z RingHom R
39 36 37 38 3imtr4g Z Ring NzRing R NzRing f Z RingHom R f 0 Z = 1 R f 0 Z = 0 R Z RingHom R =
40 19 39 mpd Z Ring NzRing R NzRing Z RingHom R =