Metamath Proof Explorer


Theorem nrmsep3

Description: In a normal space, given a closed set B inside an open set A , there is an open set x such that B C_ x C_ cls ( x ) C_ A . (Contributed by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion nrmsep3 JNrmAJBClsdJBAxJBxclsJxA

Proof

Step Hyp Ref Expression
1 isnrm JNrmJTopyJzClsdJ𝒫yxJzxclsJxy
2 pweq y=A𝒫y=𝒫A
3 2 ineq2d y=AClsdJ𝒫y=ClsdJ𝒫A
4 sseq2 y=AclsJxyclsJxA
5 4 anbi2d y=AzxclsJxyzxclsJxA
6 5 rexbidv y=AxJzxclsJxyxJzxclsJxA
7 3 6 raleqbidv y=AzClsdJ𝒫yxJzxclsJxyzClsdJ𝒫AxJzxclsJxA
8 7 rspccv yJzClsdJ𝒫yxJzxclsJxyAJzClsdJ𝒫AxJzxclsJxA
9 1 8 simplbiim JNrmAJzClsdJ𝒫AxJzxclsJxA
10 elin BClsdJ𝒫ABClsdJB𝒫A
11 elpwg BClsdJB𝒫ABA
12 11 pm5.32i BClsdJB𝒫ABClsdJBA
13 10 12 bitri BClsdJ𝒫ABClsdJBA
14 cleq1lem z=BzxclsJxABxclsJxA
15 14 rexbidv z=BxJzxclsJxAxJBxclsJxA
16 15 rspccv zClsdJ𝒫AxJzxclsJxABClsdJ𝒫AxJBxclsJxA
17 13 16 biimtrrid zClsdJ𝒫AxJzxclsJxABClsdJBAxJBxclsJxA
18 9 17 syl6 JNrmAJBClsdJBAxJBxclsJxA
19 18 exp4a JNrmAJBClsdJBAxJBxclsJxA
20 19 3imp2 JNrmAJBClsdJBAxJBxclsJxA