Description: A normal subgroup N is a member of all subgroups F of the quotient group by N . In fact, it is the identity element of the quotient group. (Contributed by Thierry Arnoux, 27-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nsgqus0.q | |
|
Assertion | nsgqus0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsgqus0.q | |
|
2 | simpl | |
|
3 | nsgsubg | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | 4 5 | lsm02 | |
7 | 2 3 6 | 3syl | |
8 | 1 4 | qus0 | |
9 | 8 | adantr | |
10 | eqid | |
|
11 | 3 | adantr | |
12 | subgrcl | |
|
13 | 3 12 | syl | |
14 | 13 | adantr | |
15 | 10 4 | grpidcl | |
16 | 14 15 | syl | |
17 | 10 5 11 16 | quslsm | |
18 | 9 17 | eqtr3d | |
19 | eqid | |
|
20 | 19 | subg0cl | |
21 | 20 | adantl | |
22 | 18 21 | eqeltrrd | |
23 | 7 22 | eqeltrrd | |