Metamath Proof Explorer


Theorem nsgqus0

Description: A normal subgroup N is a member of all subgroups F of the quotient group by N . In fact, it is the identity element of the quotient group. (Contributed by Thierry Arnoux, 27-Jul-2024)

Ref Expression
Hypothesis nsgqus0.q Q=G/𝑠G~QGN
Assertion nsgqus0 NNrmSGrpGFSubGrpQNF

Proof

Step Hyp Ref Expression
1 nsgqus0.q Q=G/𝑠G~QGN
2 simpl NNrmSGrpGFSubGrpQNNrmSGrpG
3 nsgsubg NNrmSGrpGNSubGrpG
4 eqid 0G=0G
5 eqid LSSumG=LSSumG
6 4 5 lsm02 NSubGrpG0GLSSumGN=N
7 2 3 6 3syl NNrmSGrpGFSubGrpQ0GLSSumGN=N
8 1 4 qus0 NNrmSGrpG0GG~QGN=0Q
9 8 adantr NNrmSGrpGFSubGrpQ0GG~QGN=0Q
10 eqid BaseG=BaseG
11 3 adantr NNrmSGrpGFSubGrpQNSubGrpG
12 subgrcl NSubGrpGGGrp
13 3 12 syl NNrmSGrpGGGrp
14 13 adantr NNrmSGrpGFSubGrpQGGrp
15 10 4 grpidcl GGrp0GBaseG
16 14 15 syl NNrmSGrpGFSubGrpQ0GBaseG
17 10 5 11 16 quslsm NNrmSGrpGFSubGrpQ0GG~QGN=0GLSSumGN
18 9 17 eqtr3d NNrmSGrpGFSubGrpQ0Q=0GLSSumGN
19 eqid 0Q=0Q
20 19 subg0cl FSubGrpQ0QF
21 20 adantl NNrmSGrpGFSubGrpQ0QF
22 18 21 eqeltrrd NNrmSGrpGFSubGrpQ0GLSSumGNF
23 7 22 eqeltrrd NNrmSGrpGFSubGrpQNF