Metamath Proof Explorer


Theorem numclwwlk4

Description: The total number of closed walks in a finite simple graph is the sum of the numbers of closed walks starting at each of its vertices. (Contributed by Alexander van der Vekens, 7-Oct-2018) (Revised by AV, 2-Jun-2021) (Revised by AV, 7-Mar-2022) (Proof shortened by AV, 28-Mar-2022)

Ref Expression
Hypothesis numclwwlk3.v V=VtxG
Assertion numclwwlk4 GFinUSGraphNNClWWalksNG=xVxClWWalksNOnGN

Proof

Step Hyp Ref Expression
1 numclwwlk3.v V=VtxG
2 fusgrusgr GFinUSGraphGUSGraph
3 2 adantr GFinUSGraphNGUSGraph
4 1 clwwlknun GUSGraphNClWWalksNG=xVxClWWalksNOnGN
5 3 4 syl GFinUSGraphNNClWWalksNG=xVxClWWalksNOnGN
6 5 fveq2d GFinUSGraphNNClWWalksNG=xVxClWWalksNOnGN
7 1 fusgrvtxfi GFinUSGraphVFin
8 7 adantr GFinUSGraphNVFin
9 1 clwwlknonfin VFinxClWWalksNOnGNFin
10 7 9 syl GFinUSGraphxClWWalksNOnGNFin
11 10 adantr GFinUSGraphNxClWWalksNOnGNFin
12 11 adantr GFinUSGraphNxVxClWWalksNOnGNFin
13 clwwlknondisj DisjxVxClWWalksNOnGN
14 13 a1i GFinUSGraphNDisjxVxClWWalksNOnGN
15 8 12 14 hashiun GFinUSGraphNxVxClWWalksNOnGN=xVxClWWalksNOnGN
16 6 15 eqtrd GFinUSGraphNNClWWalksNG=xVxClWWalksNOnGN