Metamath Proof Explorer


Theorem nvge0

Description: The norm of a normed complex vector space is nonnegative. Second part of Problem 2 of Kreyszig p. 64. (Contributed by NM, 28-Nov-2006) (Proof shortened by AV, 10-Jul-2022) (New usage is discouraged.)

Ref Expression
Hypotheses nvge0.1 X=BaseSetU
nvge0.6 N=normCVU
Assertion nvge0 UNrmCVecAX0NA

Proof

Step Hyp Ref Expression
1 nvge0.1 X=BaseSetU
2 nvge0.6 N=normCVU
3 2rp 2+
4 3 a1i UNrmCVecAX2+
5 1 2 nvcl UNrmCVecAXNA
6 eqid 0vecU=0vecU
7 6 2 nvz0 UNrmCVecN0vecU=0
8 7 adantr UNrmCVecAXN0vecU=0
9 1pneg1e0 1+-1=0
10 9 oveq1i 1+-1𝑠OLDUA=0𝑠OLDUA
11 eqid 𝑠OLDU=𝑠OLDU
12 1 11 6 nv0 UNrmCVecAX0𝑠OLDUA=0vecU
13 10 12 eqtr2id UNrmCVecAX0vecU=1+-1𝑠OLDUA
14 neg1cn 1
15 ax-1cn 1
16 eqid +vU=+vU
17 1 16 11 nvdir UNrmCVec11AX1+-1𝑠OLDUA=1𝑠OLDUA+vU-1𝑠OLDUA
18 15 17 mp3anr1 UNrmCVec1AX1+-1𝑠OLDUA=1𝑠OLDUA+vU-1𝑠OLDUA
19 14 18 mpanr1 UNrmCVecAX1+-1𝑠OLDUA=1𝑠OLDUA+vU-1𝑠OLDUA
20 1 11 nvsid UNrmCVecAX1𝑠OLDUA=A
21 20 oveq1d UNrmCVecAX1𝑠OLDUA+vU-1𝑠OLDUA=A+vU-1𝑠OLDUA
22 13 19 21 3eqtrd UNrmCVecAX0vecU=A+vU-1𝑠OLDUA
23 22 fveq2d UNrmCVecAXN0vecU=NA+vU-1𝑠OLDUA
24 8 23 eqtr3d UNrmCVecAX0=NA+vU-1𝑠OLDUA
25 1 11 nvscl UNrmCVec1AX-1𝑠OLDUAX
26 14 25 mp3an2 UNrmCVecAX-1𝑠OLDUAX
27 1 16 2 nvtri UNrmCVecAX-1𝑠OLDUAXNA+vU-1𝑠OLDUANA+N-1𝑠OLDUA
28 26 27 mpd3an3 UNrmCVecAXNA+vU-1𝑠OLDUANA+N-1𝑠OLDUA
29 24 28 eqbrtrd UNrmCVecAX0NA+N-1𝑠OLDUA
30 1 11 2 nvm1 UNrmCVecAXN-1𝑠OLDUA=NA
31 30 oveq2d UNrmCVecAXNA+N-1𝑠OLDUA=NA+NA
32 5 recnd UNrmCVecAXNA
33 32 2timesd UNrmCVecAX2NA=NA+NA
34 31 33 eqtr4d UNrmCVecAXNA+N-1𝑠OLDUA=2NA
35 29 34 breqtrd UNrmCVecAX02NA
36 4 5 35 prodge0rd UNrmCVecAX0NA