Description: Distributive law for scalar product over subtraction. (Contributed by NM, 14-Feb-2008) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nvmdi.1 | |
|
nvmdi.3 | |
||
nvmdi.4 | |
||
Assertion | nvmdi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvmdi.1 | |
|
2 | nvmdi.3 | |
|
3 | nvmdi.4 | |
|
4 | simpr1 | |
|
5 | simpr2 | |
|
6 | neg1cn | |
|
7 | 1 3 | nvscl | |
8 | 6 7 | mp3an2 | |
9 | 8 | 3ad2antr3 | |
10 | 4 5 9 | 3jca | |
11 | eqid | |
|
12 | 1 11 3 | nvdi | |
13 | 10 12 | syldan | |
14 | 1 3 | nvscom | |
15 | 6 14 | mp3anr2 | |
16 | 15 | 3adantr2 | |
17 | 16 | oveq2d | |
18 | 13 17 | eqtrd | |
19 | 1 11 3 2 | nvmval | |
20 | 19 | 3adant3r1 | |
21 | 20 | oveq2d | |
22 | simpl | |
|
23 | 1 3 | nvscl | |
24 | 23 | 3adant3r3 | |
25 | 1 3 | nvscl | |
26 | 25 | 3adant3r2 | |
27 | 1 11 3 2 | nvmval | |
28 | 22 24 26 27 | syl3anc | |
29 | 18 21 28 | 3eqtr4d | |