Metamath Proof Explorer


Theorem nvmdi

Description: Distributive law for scalar product over subtraction. (Contributed by NM, 14-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvmdi.1 X=BaseSetU
nvmdi.3 M=-vU
nvmdi.4 S=𝑠OLDU
Assertion nvmdi UNrmCVecABXCXASBMC=ASBMASC

Proof

Step Hyp Ref Expression
1 nvmdi.1 X=BaseSetU
2 nvmdi.3 M=-vU
3 nvmdi.4 S=𝑠OLDU
4 simpr1 UNrmCVecABXCXA
5 simpr2 UNrmCVecABXCXBX
6 neg1cn 1
7 1 3 nvscl UNrmCVec1CX-1SCX
8 6 7 mp3an2 UNrmCVecCX-1SCX
9 8 3ad2antr3 UNrmCVecABXCX-1SCX
10 4 5 9 3jca UNrmCVecABXCXABX-1SCX
11 eqid +vU=+vU
12 1 11 3 nvdi UNrmCVecABX-1SCXASB+vU-1SC=ASB+vUAS-1SC
13 10 12 syldan UNrmCVecABXCXASB+vU-1SC=ASB+vUAS-1SC
14 1 3 nvscom UNrmCVecA1CXAS-1SC=-1SASC
15 6 14 mp3anr2 UNrmCVecACXAS-1SC=-1SASC
16 15 3adantr2 UNrmCVecABXCXAS-1SC=-1SASC
17 16 oveq2d UNrmCVecABXCXASB+vUAS-1SC=ASB+vU-1SASC
18 13 17 eqtrd UNrmCVecABXCXASB+vU-1SC=ASB+vU-1SASC
19 1 11 3 2 nvmval UNrmCVecBXCXBMC=B+vU-1SC
20 19 3adant3r1 UNrmCVecABXCXBMC=B+vU-1SC
21 20 oveq2d UNrmCVecABXCXASBMC=ASB+vU-1SC
22 simpl UNrmCVecABXCXUNrmCVec
23 1 3 nvscl UNrmCVecABXASBX
24 23 3adant3r3 UNrmCVecABXCXASBX
25 1 3 nvscl UNrmCVecACXASCX
26 25 3adant3r2 UNrmCVecABXCXASCX
27 1 11 3 2 nvmval UNrmCVecASBXASCXASBMASC=ASB+vU-1SASC
28 22 24 26 27 syl3anc UNrmCVecABXCXASBMASC=ASB+vU-1SASC
29 18 21 28 3eqtr4d UNrmCVecABXCXASBMC=ASBMASC