Metamath Proof Explorer


Theorem nvs

Description: Proportionality property of the norm of a scalar product in a normed complex vector space. (Contributed by NM, 11-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nvs.1 X = BaseSet U
nvs.4 S = 𝑠OLD U
nvs.6 N = norm CV U
Assertion nvs U NrmCVec A B X N A S B = A N B

Proof

Step Hyp Ref Expression
1 nvs.1 X = BaseSet U
2 nvs.4 S = 𝑠OLD U
3 nvs.6 N = norm CV U
4 eqid + v U = + v U
5 eqid 0 vec U = 0 vec U
6 1 4 2 5 3 nvi U NrmCVec + v U S CVec OLD N : X x X N x = 0 x = 0 vec U y N y S x = y N x y X N x + v U y N x + N y
7 6 simp3d U NrmCVec x X N x = 0 x = 0 vec U y N y S x = y N x y X N x + v U y N x + N y
8 simp2 N x = 0 x = 0 vec U y N y S x = y N x y X N x + v U y N x + N y y N y S x = y N x
9 8 ralimi x X N x = 0 x = 0 vec U y N y S x = y N x y X N x + v U y N x + N y x X y N y S x = y N x
10 7 9 syl U NrmCVec x X y N y S x = y N x
11 oveq2 x = B y S x = y S B
12 11 fveq2d x = B N y S x = N y S B
13 fveq2 x = B N x = N B
14 13 oveq2d x = B y N x = y N B
15 12 14 eqeq12d x = B N y S x = y N x N y S B = y N B
16 fvoveq1 y = A N y S B = N A S B
17 fveq2 y = A y = A
18 17 oveq1d y = A y N B = A N B
19 16 18 eqeq12d y = A N y S B = y N B N A S B = A N B
20 15 19 rspc2v B X A x X y N y S x = y N x N A S B = A N B
21 10 20 syl5 B X A U NrmCVec N A S B = A N B
22 21 3impia B X A U NrmCVec N A S B = A N B
23 22 3com13 U NrmCVec A B X N A S B = A N B