Metamath Proof Explorer


Theorem nvs

Description: Proportionality property of the norm of a scalar product in a normed complex vector space. (Contributed by NM, 11-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nvs.1 X=BaseSetU
nvs.4 S=𝑠OLDU
nvs.6 N=normCVU
Assertion nvs UNrmCVecABXNASB=ANB

Proof

Step Hyp Ref Expression
1 nvs.1 X=BaseSetU
2 nvs.4 S=𝑠OLDU
3 nvs.6 N=normCVU
4 eqid +vU=+vU
5 eqid 0vecU=0vecU
6 1 4 2 5 3 nvi UNrmCVec+vUSCVecOLDN:XxXNx=0x=0vecUyNySx=yNxyXNx+vUyNx+Ny
7 6 simp3d UNrmCVecxXNx=0x=0vecUyNySx=yNxyXNx+vUyNx+Ny
8 simp2 Nx=0x=0vecUyNySx=yNxyXNx+vUyNx+NyyNySx=yNx
9 8 ralimi xXNx=0x=0vecUyNySx=yNxyXNx+vUyNx+NyxXyNySx=yNx
10 7 9 syl UNrmCVecxXyNySx=yNx
11 oveq2 x=BySx=ySB
12 11 fveq2d x=BNySx=NySB
13 fveq2 x=BNx=NB
14 13 oveq2d x=ByNx=yNB
15 12 14 eqeq12d x=BNySx=yNxNySB=yNB
16 fvoveq1 y=ANySB=NASB
17 fveq2 y=Ay=A
18 17 oveq1d y=AyNB=ANB
19 16 18 eqeq12d y=ANySB=yNBNASB=ANB
20 15 19 rspc2v BXAxXyNySx=yNxNASB=ANB
21 10 20 syl5 BXAUNrmCVecNASB=ANB
22 21 3impia BXAUNrmCVecNASB=ANB
23 22 3com13 UNrmCVecABXNASB=ANB