Metamath Proof Explorer


Theorem nvscom

Description: Commutative law for the scalar product of a normed complex vector space. (Contributed by NM, 14-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvscl.1 X=BaseSetU
nvscl.4 S=𝑠OLDU
Assertion nvscom UNrmCVecABCXASBSC=BSASC

Proof

Step Hyp Ref Expression
1 nvscl.1 X=BaseSetU
2 nvscl.4 S=𝑠OLDU
3 mulcom ABAB=BA
4 3 oveq1d ABABSC=BASC
5 4 3adant3 ABCXABSC=BASC
6 5 adantl UNrmCVecABCXABSC=BASC
7 1 2 nvsass UNrmCVecABCXABSC=ASBSC
8 3ancoma ABCXBACX
9 1 2 nvsass UNrmCVecBACXBASC=BSASC
10 8 9 sylan2b UNrmCVecABCXBASC=BSASC
11 6 7 10 3eqtr3d UNrmCVecABCXASBSC=BSASC