Description: If the difference of two functions is eventually bounded, eventual boundedness of either one implies the other. (Contributed by Mario Carneiro, 26-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | o1dif.1 | |
|
o1dif.2 | |
||
o1dif.3 | |
||
Assertion | o1dif | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | o1dif.1 | |
|
2 | o1dif.2 | |
|
3 | o1dif.3 | |
|
4 | o1sub | |
|
5 | 4 | expcom | |
6 | 3 5 | syl | |
7 | 1 2 | subcld | |
8 | 7 | ralrimiva | |
9 | dmmptg | |
|
10 | 8 9 | syl | |
11 | o1dm | |
|
12 | 3 11 | syl | |
13 | 10 12 | eqsstrrd | |
14 | reex | |
|
15 | 14 | ssex | |
16 | 13 15 | syl | |
17 | eqidd | |
|
18 | eqidd | |
|
19 | 16 1 7 17 18 | offval2 | |
20 | 1 2 | nncand | |
21 | 20 | mpteq2dva | |
22 | 19 21 | eqtrd | |
23 | 22 | eleq1d | |
24 | 6 23 | sylibd | |
25 | o1add | |
|
26 | 25 | ex | |
27 | 3 26 | syl | |
28 | eqidd | |
|
29 | 16 7 2 18 28 | offval2 | |
30 | 1 2 | npcand | |
31 | 30 | mpteq2dva | |
32 | 29 31 | eqtrd | |
33 | 32 | eleq1d | |
34 | 27 33 | sylibd | |
35 | 24 34 | impbid | |