Description: An element of a ring-like structure plus itself is two times the element. "Two" in such a structure is the sum of the unity element with itself. This (formerly) part of the proof for ringcom depends on the (right) distributivity and the existence of a (left) multiplicative identity only. (Contributed by Gérard Lang, 4-Dec-2014) (Revised by AV, 1-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | o2timesd.e | |
|
o2timesd.u | |
||
o2timesd.i | |
||
o2timesd.x | |
||
Assertion | o2timesd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | o2timesd.e | |
|
2 | o2timesd.u | |
|
3 | o2timesd.i | |
|
4 | o2timesd.x | |
|
5 | oveq2 | |
|
6 | id | |
|
7 | 5 6 | eqeq12d | |
8 | 7 | rspcva | |
9 | 8 | eqcomd | |
10 | 4 3 9 | syl2anc | |
11 | 10 10 | oveq12d | |
12 | 2 2 4 | 3jca | |
13 | oveq1 | |
|
14 | 13 | oveq1d | |
15 | oveq1 | |
|
16 | 15 | oveq1d | |
17 | 14 16 | eqeq12d | |
18 | oveq2 | |
|
19 | 18 | oveq1d | |
20 | oveq1 | |
|
21 | 20 | oveq2d | |
22 | 19 21 | eqeq12d | |
23 | oveq2 | |
|
24 | oveq2 | |
|
25 | 24 24 | oveq12d | |
26 | 23 25 | eqeq12d | |
27 | 17 22 26 | rspc3v | |
28 | 12 1 27 | sylc | |
29 | 11 28 | eqtr4d | |