Metamath Proof Explorer


Theorem o2timesd

Description: An element of a ring-like structure plus itself is two times the element. "Two" in such a structure is the sum of the unity element with itself. This (formerly) part of the proof for ringcom depends on the (right) distributivity and the existence of a (left) multiplicative identity only. (Contributed by Gérard Lang, 4-Dec-2014) (Revised by AV, 1-Feb-2025)

Ref Expression
Hypotheses o2timesd.e φxByBzBx+˙y·˙z=x·˙z+˙y·˙z
o2timesd.u φ1˙B
o2timesd.i φxB1˙·˙x=x
o2timesd.x φXB
Assertion o2timesd φX+˙X=1˙+˙1˙·˙X

Proof

Step Hyp Ref Expression
1 o2timesd.e φxByBzBx+˙y·˙z=x·˙z+˙y·˙z
2 o2timesd.u φ1˙B
3 o2timesd.i φxB1˙·˙x=x
4 o2timesd.x φXB
5 oveq2 x=X1˙·˙x=1˙·˙X
6 id x=Xx=X
7 5 6 eqeq12d x=X1˙·˙x=x1˙·˙X=X
8 7 rspcva XBxB1˙·˙x=x1˙·˙X=X
9 8 eqcomd XBxB1˙·˙x=xX=1˙·˙X
10 4 3 9 syl2anc φX=1˙·˙X
11 10 10 oveq12d φX+˙X=1˙·˙X+˙1˙·˙X
12 2 2 4 3jca φ1˙B1˙BXB
13 oveq1 x=1˙x+˙y=1˙+˙y
14 13 oveq1d x=1˙x+˙y·˙z=1˙+˙y·˙z
15 oveq1 x=1˙x·˙z=1˙·˙z
16 15 oveq1d x=1˙x·˙z+˙y·˙z=1˙·˙z+˙y·˙z
17 14 16 eqeq12d x=1˙x+˙y·˙z=x·˙z+˙y·˙z1˙+˙y·˙z=1˙·˙z+˙y·˙z
18 oveq2 y=1˙1˙+˙y=1˙+˙1˙
19 18 oveq1d y=1˙1˙+˙y·˙z=1˙+˙1˙·˙z
20 oveq1 y=1˙y·˙z=1˙·˙z
21 20 oveq2d y=1˙1˙·˙z+˙y·˙z=1˙·˙z+˙1˙·˙z
22 19 21 eqeq12d y=1˙1˙+˙y·˙z=1˙·˙z+˙y·˙z1˙+˙1˙·˙z=1˙·˙z+˙1˙·˙z
23 oveq2 z=X1˙+˙1˙·˙z=1˙+˙1˙·˙X
24 oveq2 z=X1˙·˙z=1˙·˙X
25 24 24 oveq12d z=X1˙·˙z+˙1˙·˙z=1˙·˙X+˙1˙·˙X
26 23 25 eqeq12d z=X1˙+˙1˙·˙z=1˙·˙z+˙1˙·˙z1˙+˙1˙·˙X=1˙·˙X+˙1˙·˙X
27 17 22 26 rspc3v 1˙B1˙BXBxByBzBx+˙y·˙z=x·˙z+˙y·˙z1˙+˙1˙·˙X=1˙·˙X+˙1˙·˙X
28 12 1 27 sylc φ1˙+˙1˙·˙X=1˙·˙X+˙1˙·˙X
29 11 28 eqtr4d φX+˙X=1˙+˙1˙·˙X