Metamath Proof Explorer


Theorem oacomf1olem

Description: Lemma for oacomf1o . (Contributed by Mario Carneiro, 30-May-2015)

Ref Expression
Hypothesis oacomf1olem.1 F=xAB+𝑜x
Assertion oacomf1olem AOnBOnF:A1-1 ontoranFranFB=

Proof

Step Hyp Ref Expression
1 oacomf1olem.1 F=xAB+𝑜x
2 oaf1o BOnxOnB+𝑜x:On1-1 ontoOnB
3 2 adantl AOnBOnxOnB+𝑜x:On1-1 ontoOnB
4 f1of1 xOnB+𝑜x:On1-1 ontoOnBxOnB+𝑜x:On1-1OnB
5 3 4 syl AOnBOnxOnB+𝑜x:On1-1OnB
6 onss AOnAOn
7 6 adantr AOnBOnAOn
8 f1ssres xOnB+𝑜x:On1-1OnBAOnxOnB+𝑜xA:A1-1OnB
9 5 7 8 syl2anc AOnBOnxOnB+𝑜xA:A1-1OnB
10 7 resmptd AOnBOnxOnB+𝑜xA=xAB+𝑜x
11 10 1 eqtr4di AOnBOnxOnB+𝑜xA=F
12 f1eq1 xOnB+𝑜xA=FxOnB+𝑜xA:A1-1OnBF:A1-1OnB
13 11 12 syl AOnBOnxOnB+𝑜xA:A1-1OnBF:A1-1OnB
14 9 13 mpbid AOnBOnF:A1-1OnB
15 f1f1orn F:A1-1OnBF:A1-1 ontoranF
16 14 15 syl AOnBOnF:A1-1 ontoranF
17 f1f F:A1-1OnBF:AOnB
18 frn F:AOnBranFOnB
19 14 17 18 3syl AOnBOnranFOnB
20 19 difss2d AOnBOnranFOn
21 reldisj ranFOnranFB=ranFOnB
22 20 21 syl AOnBOnranFB=ranFOnB
23 19 22 mpbird AOnBOnranFB=
24 16 23 jca AOnBOnF:A1-1 ontoranFranFB=