Description: Ordering property of ordinal addition. Proposition 8.4 of TakeutiZaring p. 58. (Contributed by NM, 5-Dec-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | oaordi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onelon | |
|
2 | 1 | adantll | |
3 | eloni | |
|
4 | ordsucss | |
|
5 | 3 4 | syl | |
6 | 5 | ad2antlr | |
7 | onsucb | |
|
8 | oveq2 | |
|
9 | 8 | sseq2d | |
10 | 9 | imbi2d | |
11 | oveq2 | |
|
12 | 11 | sseq2d | |
13 | 12 | imbi2d | |
14 | oveq2 | |
|
15 | 14 | sseq2d | |
16 | 15 | imbi2d | |
17 | oveq2 | |
|
18 | 17 | sseq2d | |
19 | 18 | imbi2d | |
20 | ssid | |
|
21 | 20 | 2a1i | |
22 | sssucid | |
|
23 | sstr2 | |
|
24 | 22 23 | mpi | |
25 | oasuc | |
|
26 | 25 | ancoms | |
27 | 26 | sseq2d | |
28 | 24 27 | imbitrrid | |
29 | 28 | ex | |
30 | 29 | ad2antrr | |
31 | 30 | a2d | |
32 | sucssel | |
|
33 | 7 32 | sylbir | |
34 | limsuc | |
|
35 | 34 | biimpd | |
36 | 33 35 | sylan9r | |
37 | 36 | imp | |
38 | oveq2 | |
|
39 | 38 | ssiun2s | |
40 | 37 39 | syl | |
41 | 40 | adantr | |
42 | vex | |
|
43 | oalim | |
|
44 | 42 43 | mpanr1 | |
45 | 44 | ancoms | |
46 | 45 | adantlr | |
47 | 46 | adantlr | |
48 | 41 47 | sseqtrrd | |
49 | 48 | ex | |
50 | 49 | a1d | |
51 | 10 13 16 19 21 31 50 | tfindsg | |
52 | 51 | exp31 | |
53 | 7 52 | biimtrid | |
54 | 53 | com4r | |
55 | 54 | imp31 | |
56 | oasuc | |
|
57 | 56 | sseq1d | |
58 | ovex | |
|
59 | sucssel | |
|
60 | 58 59 | ax-mp | |
61 | 57 60 | syl6bi | |
62 | 61 | adantlr | |
63 | 6 55 62 | 3syld | |
64 | 63 | imp | |
65 | 64 | an32s | |
66 | 2 65 | mpdan | |
67 | 66 | ex | |
68 | 67 | ancoms | |