Metamath Proof Explorer


Theorem oaordi

Description: Ordering property of ordinal addition. Proposition 8.4 of TakeutiZaring p. 58. (Contributed by NM, 5-Dec-2004)

Ref Expression
Assertion oaordi BOnCOnABC+𝑜AC+𝑜B

Proof

Step Hyp Ref Expression
1 onelon BOnABAOn
2 1 adantll COnBOnABAOn
3 eloni BOnOrdB
4 ordsucss OrdBABsucAB
5 3 4 syl BOnABsucAB
6 5 ad2antlr COnBOnAOnABsucAB
7 onsucb AOnsucAOn
8 oveq2 x=sucAC+𝑜x=C+𝑜sucA
9 8 sseq2d x=sucAC+𝑜sucAC+𝑜xC+𝑜sucAC+𝑜sucA
10 9 imbi2d x=sucACOnC+𝑜sucAC+𝑜xCOnC+𝑜sucAC+𝑜sucA
11 oveq2 x=yC+𝑜x=C+𝑜y
12 11 sseq2d x=yC+𝑜sucAC+𝑜xC+𝑜sucAC+𝑜y
13 12 imbi2d x=yCOnC+𝑜sucAC+𝑜xCOnC+𝑜sucAC+𝑜y
14 oveq2 x=sucyC+𝑜x=C+𝑜sucy
15 14 sseq2d x=sucyC+𝑜sucAC+𝑜xC+𝑜sucAC+𝑜sucy
16 15 imbi2d x=sucyCOnC+𝑜sucAC+𝑜xCOnC+𝑜sucAC+𝑜sucy
17 oveq2 x=BC+𝑜x=C+𝑜B
18 17 sseq2d x=BC+𝑜sucAC+𝑜xC+𝑜sucAC+𝑜B
19 18 imbi2d x=BCOnC+𝑜sucAC+𝑜xCOnC+𝑜sucAC+𝑜B
20 ssid C+𝑜sucAC+𝑜sucA
21 20 2a1i sucAOnCOnC+𝑜sucAC+𝑜sucA
22 sssucid C+𝑜ysucC+𝑜y
23 sstr2 C+𝑜sucAC+𝑜yC+𝑜ysucC+𝑜yC+𝑜sucAsucC+𝑜y
24 22 23 mpi C+𝑜sucAC+𝑜yC+𝑜sucAsucC+𝑜y
25 oasuc COnyOnC+𝑜sucy=sucC+𝑜y
26 25 ancoms yOnCOnC+𝑜sucy=sucC+𝑜y
27 26 sseq2d yOnCOnC+𝑜sucAC+𝑜sucyC+𝑜sucAsucC+𝑜y
28 24 27 imbitrrid yOnCOnC+𝑜sucAC+𝑜yC+𝑜sucAC+𝑜sucy
29 28 ex yOnCOnC+𝑜sucAC+𝑜yC+𝑜sucAC+𝑜sucy
30 29 ad2antrr yOnsucAOnsucAyCOnC+𝑜sucAC+𝑜yC+𝑜sucAC+𝑜sucy
31 30 a2d yOnsucAOnsucAyCOnC+𝑜sucAC+𝑜yCOnC+𝑜sucAC+𝑜sucy
32 sucssel AOnsucAxAx
33 7 32 sylbir sucAOnsucAxAx
34 limsuc LimxAxsucAx
35 34 biimpd LimxAxsucAx
36 33 35 sylan9r LimxsucAOnsucAxsucAx
37 36 imp LimxsucAOnsucAxsucAx
38 oveq2 y=sucAC+𝑜y=C+𝑜sucA
39 38 ssiun2s sucAxC+𝑜sucAyxC+𝑜y
40 37 39 syl LimxsucAOnsucAxC+𝑜sucAyxC+𝑜y
41 40 adantr LimxsucAOnsucAxCOnC+𝑜sucAyxC+𝑜y
42 vex xV
43 oalim COnxVLimxC+𝑜x=yxC+𝑜y
44 42 43 mpanr1 COnLimxC+𝑜x=yxC+𝑜y
45 44 ancoms LimxCOnC+𝑜x=yxC+𝑜y
46 45 adantlr LimxsucAOnCOnC+𝑜x=yxC+𝑜y
47 46 adantlr LimxsucAOnsucAxCOnC+𝑜x=yxC+𝑜y
48 41 47 sseqtrrd LimxsucAOnsucAxCOnC+𝑜sucAC+𝑜x
49 48 ex LimxsucAOnsucAxCOnC+𝑜sucAC+𝑜x
50 49 a1d LimxsucAOnsucAxyxsucAyCOnC+𝑜sucAC+𝑜yCOnC+𝑜sucAC+𝑜x
51 10 13 16 19 21 31 50 tfindsg BOnsucAOnsucABCOnC+𝑜sucAC+𝑜B
52 51 exp31 BOnsucAOnsucABCOnC+𝑜sucAC+𝑜B
53 7 52 biimtrid BOnAOnsucABCOnC+𝑜sucAC+𝑜B
54 53 com4r COnBOnAOnsucABC+𝑜sucAC+𝑜B
55 54 imp31 COnBOnAOnsucABC+𝑜sucAC+𝑜B
56 oasuc COnAOnC+𝑜sucA=sucC+𝑜A
57 56 sseq1d COnAOnC+𝑜sucAC+𝑜BsucC+𝑜AC+𝑜B
58 ovex C+𝑜AV
59 sucssel C+𝑜AVsucC+𝑜AC+𝑜BC+𝑜AC+𝑜B
60 58 59 ax-mp sucC+𝑜AC+𝑜BC+𝑜AC+𝑜B
61 57 60 syl6bi COnAOnC+𝑜sucAC+𝑜BC+𝑜AC+𝑜B
62 61 adantlr COnBOnAOnC+𝑜sucAC+𝑜BC+𝑜AC+𝑜B
63 6 55 62 3syld COnBOnAOnABC+𝑜AC+𝑜B
64 63 imp COnBOnAOnABC+𝑜AC+𝑜B
65 64 an32s COnBOnABAOnC+𝑜AC+𝑜B
66 2 65 mpdan COnBOnABC+𝑜AC+𝑜B
67 66 ex COnBOnABC+𝑜AC+𝑜B
68 67 ancoms BOnCOnABC+𝑜AC+𝑜B