Description: The double complement is the smallest closed subspace containing a subset of Hilbert space. Remark 3.12(B) of Beran p. 107. (Contributed by NM, 8-Aug-2000) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | ococin | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | helch | |
|
2 | 1 | jctl | |
3 | sseq2 | |
|
4 | 3 | elrab | |
5 | 2 4 | sylibr | |
6 | intss1 | |
|
7 | 5 6 | syl | |
8 | ocss | |
|
9 | 7 8 | syl | |
10 | ocss | |
|
11 | 9 10 | jca | |
12 | ssintub | |
|
13 | occon | |
|
14 | 7 13 | mpdan | |
15 | 12 14 | mpi | |
16 | occon | |
|
17 | 11 15 16 | sylc | |
18 | ssrab2 | |
|
19 | 3 | rspcev | |
20 | 1 19 | mpan | |
21 | rabn0 | |
|
22 | 20 21 | sylibr | |
23 | chintcl | |
|
24 | 18 22 23 | sylancr | |
25 | ococ | |
|
26 | 24 25 | syl | |
27 | 17 26 | sseqtrd | |
28 | occl | |
|
29 | 10 28 | syl | |
30 | ococss | |
|
31 | sseq2 | |
|
32 | 31 | elrab | |
33 | 29 30 32 | sylanbrc | |
34 | intss1 | |
|
35 | 33 34 | syl | |
36 | 27 35 | eqssd | |