Metamath Proof Explorer


Theorem ococin

Description: The double complement is the smallest closed subspace containing a subset of Hilbert space. Remark 3.12(B) of Beran p. 107. (Contributed by NM, 8-Aug-2000) (New usage is discouraged.)

Ref Expression
Assertion ococin AA=xC|Ax

Proof

Step Hyp Ref Expression
1 helch C
2 1 jctl ACA
3 sseq2 x=AxA
4 3 elrab xC|AxCA
5 2 4 sylibr AxC|Ax
6 intss1 xC|AxxC|Ax
7 5 6 syl AxC|Ax
8 ocss xC|AxxC|Ax
9 7 8 syl AxC|Ax
10 ocss AA
11 9 10 jca AxC|AxA
12 ssintub AxC|Ax
13 occon AxC|AxAxC|AxxC|AxA
14 7 13 mpdan AAxC|AxxC|AxA
15 12 14 mpi AxC|AxA
16 occon xC|AxAxC|AxAAxC|Ax
17 11 15 16 sylc AAxC|Ax
18 ssrab2 xC|AxC
19 3 rspcev CAxCAx
20 1 19 mpan AxCAx
21 rabn0 xC|AxxCAx
22 20 21 sylibr AxC|Ax
23 chintcl xC|AxCxC|AxxC|AxC
24 18 22 23 sylancr AxC|AxC
25 ococ xC|AxCxC|Ax=xC|Ax
26 24 25 syl AxC|Ax=xC|Ax
27 17 26 sseqtrd AAxC|Ax
28 occl AAC
29 10 28 syl AAC
30 ococss AAA
31 sseq2 x=AAxAA
32 31 elrab AxC|AxACAA
33 29 30 32 sylanbrc AAxC|Ax
34 intss1 AxC|AxxC|AxA
35 33 34 syl AxC|AxA
36 27 35 eqssd AA=xC|Ax