Metamath Proof Explorer


Theorem odadd

Description: The order of a product is the product of the orders, if the factors have coprime order. (Contributed by Mario Carneiro, 20-Oct-2015)

Ref Expression
Hypotheses odadd1.1 O=odG
odadd1.2 X=BaseG
odadd1.3 +˙=+G
Assertion odadd GAbelAXBXOAgcdOB=1OA+˙B=OAOB

Proof

Step Hyp Ref Expression
1 odadd1.1 O=odG
2 odadd1.2 X=BaseG
3 odadd1.3 +˙=+G
4 simpl1 GAbelAXBXOAgcdOB=1GAbel
5 ablgrp GAbelGGrp
6 4 5 syl GAbelAXBXOAgcdOB=1GGrp
7 simpl2 GAbelAXBXOAgcdOB=1AX
8 simpl3 GAbelAXBXOAgcdOB=1BX
9 2 3 grpcl GGrpAXBXA+˙BX
10 6 7 8 9 syl3anc GAbelAXBXOAgcdOB=1A+˙BX
11 2 1 odcl A+˙BXOA+˙B0
12 10 11 syl GAbelAXBXOAgcdOB=1OA+˙B0
13 2 1 odcl AXOA0
14 7 13 syl GAbelAXBXOAgcdOB=1OA0
15 2 1 odcl BXOB0
16 8 15 syl GAbelAXBXOAgcdOB=1OB0
17 14 16 nn0mulcld GAbelAXBXOAgcdOB=1OAOB0
18 simpr GAbelAXBXOAgcdOB=1OAgcdOB=1
19 18 oveq2d GAbelAXBXOAgcdOB=1OA+˙BOAgcdOB=OA+˙B1
20 12 nn0cnd GAbelAXBXOAgcdOB=1OA+˙B
21 20 mulridd GAbelAXBXOAgcdOB=1OA+˙B1=OA+˙B
22 19 21 eqtrd GAbelAXBXOAgcdOB=1OA+˙BOAgcdOB=OA+˙B
23 1 2 3 odadd1 GAbelAXBXOA+˙BOAgcdOBOAOB
24 23 adantr GAbelAXBXOAgcdOB=1OA+˙BOAgcdOBOAOB
25 22 24 eqbrtrrd GAbelAXBXOAgcdOB=1OA+˙BOAOB
26 1 2 3 odadd2 GAbelAXBXOAOBOA+˙BOAgcdOB2
27 26 adantr GAbelAXBXOAgcdOB=1OAOBOA+˙BOAgcdOB2
28 18 oveq1d GAbelAXBXOAgcdOB=1OAgcdOB2=12
29 sq1 12=1
30 28 29 eqtrdi GAbelAXBXOAgcdOB=1OAgcdOB2=1
31 30 oveq2d GAbelAXBXOAgcdOB=1OA+˙BOAgcdOB2=OA+˙B1
32 31 21 eqtrd GAbelAXBXOAgcdOB=1OA+˙BOAgcdOB2=OA+˙B
33 27 32 breqtrd GAbelAXBXOAgcdOB=1OAOBOA+˙B
34 dvdseq OA+˙B0OAOB0OA+˙BOAOBOAOBOA+˙BOA+˙B=OAOB
35 12 17 25 33 34 syl22anc GAbelAXBXOAgcdOB=1OA+˙B=OAOB