Description: The order of a product is the product of the orders, if the factors have coprime order. (Contributed by Mario Carneiro, 20-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | odadd1.1 | |
|
odadd1.2 | |
||
odadd1.3 | |
||
Assertion | odadd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odadd1.1 | |
|
2 | odadd1.2 | |
|
3 | odadd1.3 | |
|
4 | simpl1 | |
|
5 | ablgrp | |
|
6 | 4 5 | syl | |
7 | simpl2 | |
|
8 | simpl3 | |
|
9 | 2 3 | grpcl | |
10 | 6 7 8 9 | syl3anc | |
11 | 2 1 | odcl | |
12 | 10 11 | syl | |
13 | 2 1 | odcl | |
14 | 7 13 | syl | |
15 | 2 1 | odcl | |
16 | 8 15 | syl | |
17 | 14 16 | nn0mulcld | |
18 | simpr | |
|
19 | 18 | oveq2d | |
20 | 12 | nn0cnd | |
21 | 20 | mulridd | |
22 | 19 21 | eqtrd | |
23 | 1 2 3 | odadd1 | |
24 | 23 | adantr | |
25 | 22 24 | eqbrtrrd | |
26 | 1 2 3 | odadd2 | |
27 | 26 | adantr | |
28 | 18 | oveq1d | |
29 | sq1 | |
|
30 | 28 29 | eqtrdi | |
31 | 30 | oveq2d | |
32 | 31 21 | eqtrd | |
33 | 27 32 | breqtrd | |
34 | dvdseq | |
|
35 | 12 17 25 33 34 | syl22anc | |