Description: An element which generates a finite subgroup has order the size of that subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | odhash.x | |
|
odhash.o | |
||
odhash.k | |
||
Assertion | odhash3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odhash.x | |
|
2 | odhash.o | |
|
3 | odhash.k | |
|
4 | 1 2 | odcl | |
5 | 4 | 3ad2ant2 | |
6 | hashcl | |
|
7 | 6 | nn0red | |
8 | pnfnre | |
|
9 | 8 | neli | |
10 | 1 2 3 | odhash | |
11 | 10 | eleq1d | |
12 | 9 11 | mtbiri | |
13 | 12 | 3expia | |
14 | 13 | necon2ad | |
15 | 7 14 | syl5 | |
16 | 15 | 3impia | |
17 | elnnne0 | |
|
18 | 5 16 17 | sylanbrc | |
19 | 1 2 3 | odhash2 | |
20 | 18 19 | syld3an3 | |
21 | 20 | eqcomd | |