Metamath Proof Explorer


Theorem odhash3

Description: An element which generates a finite subgroup has order the size of that subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015)

Ref Expression
Hypotheses odhash.x X=BaseG
odhash.o O=odG
odhash.k K=mrClsSubGrpG
Assertion odhash3 GGrpAXKAFinOA=KA

Proof

Step Hyp Ref Expression
1 odhash.x X=BaseG
2 odhash.o O=odG
3 odhash.k K=mrClsSubGrpG
4 1 2 odcl AXOA0
5 4 3ad2ant2 GGrpAXKAFinOA0
6 hashcl KAFinKA0
7 6 nn0red KAFinKA
8 pnfnre +∞
9 8 neli ¬+∞
10 1 2 3 odhash GGrpAXOA=0KA=+∞
11 10 eleq1d GGrpAXOA=0KA+∞
12 9 11 mtbiri GGrpAXOA=0¬KA
13 12 3expia GGrpAXOA=0¬KA
14 13 necon2ad GGrpAXKAOA0
15 7 14 syl5 GGrpAXKAFinOA0
16 15 3impia GGrpAXKAFinOA0
17 elnnne0 OAOA0OA0
18 5 16 17 sylanbrc GGrpAXKAFinOA
19 1 2 3 odhash2 GGrpAXOAKA=OA
20 18 19 syld3an3 GGrpAXKAFinKA=OA
21 20 eqcomd GGrpAXKAFinOA=KA