| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odcl.1 |
|
| 2 |
|
odcl.2 |
|
| 3 |
|
odid.3 |
|
| 4 |
|
odid.4 |
|
| 5 |
|
simpl3 |
|
| 6 |
5
|
zred |
|
| 7 |
|
simpr |
|
| 8 |
7
|
nnrpd |
|
| 9 |
|
modval |
|
| 10 |
6 8 9
|
syl2anc |
|
| 11 |
10
|
oveq1d |
|
| 12 |
|
simpl1 |
|
| 13 |
7
|
nnzd |
|
| 14 |
6 7
|
nndivred |
|
| 15 |
14
|
flcld |
|
| 16 |
13 15
|
zmulcld |
|
| 17 |
|
simpl2 |
|
| 18 |
|
eqid |
|
| 19 |
1 3 18
|
mulgsubdir |
|
| 20 |
12 5 16 17 19
|
syl13anc |
|
| 21 |
|
nncn |
|
| 22 |
|
zcn |
|
| 23 |
|
mulcom |
|
| 24 |
21 22 23
|
syl2an |
|
| 25 |
7 15 24
|
syl2anc |
|
| 26 |
25
|
oveq1d |
|
| 27 |
1 3
|
mulgass |
|
| 28 |
12 15 13 17 27
|
syl13anc |
|
| 29 |
1 2 3 4
|
odid |
|
| 30 |
17 29
|
syl |
|
| 31 |
30
|
oveq2d |
|
| 32 |
1 3 4
|
mulgz |
|
| 33 |
12 15 32
|
syl2anc |
|
| 34 |
31 33
|
eqtrd |
|
| 35 |
26 28 34
|
3eqtrd |
|
| 36 |
35
|
oveq2d |
|
| 37 |
1 3
|
mulgcl |
|
| 38 |
12 5 17 37
|
syl3anc |
|
| 39 |
1 4 18
|
grpsubid1 |
|
| 40 |
12 38 39
|
syl2anc |
|
| 41 |
36 40
|
eqtrd |
|
| 42 |
11 20 41
|
3eqtrd |
|