Metamath Proof Explorer


Theorem odupos

Description: Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015)

Ref Expression
Hypothesis odupos.d D=ODualO
Assertion odupos OPosetDPoset

Proof

Step Hyp Ref Expression
1 odupos.d D=ODualO
2 1 fvexi DV
3 2 a1i OPosetDV
4 eqid BaseO=BaseO
5 1 4 odubas BaseO=BaseD
6 5 a1i OPosetBaseO=BaseD
7 eqid O=O
8 1 7 oduleval O-1=D
9 8 a1i OPosetO-1=D
10 4 7 posref OPosetaBaseOaOa
11 vex aV
12 11 11 brcnv aO-1aaOa
13 10 12 sylibr OPosetaBaseOaO-1a
14 vex bV
15 11 14 brcnv aO-1bbOa
16 14 11 brcnv bO-1aaOb
17 15 16 anbi12ci aO-1bbO-1aaObbOa
18 4 7 posasymb OPosetaBaseObBaseOaObbOaa=b
19 18 biimpd OPosetaBaseObBaseOaObbOaa=b
20 17 19 biimtrid OPosetaBaseObBaseOaO-1bbO-1aa=b
21 3anrev aBaseObBaseOcBaseOcBaseObBaseOaBaseO
22 4 7 postr OPosetcBaseObBaseOaBaseOcObbOacOa
23 21 22 sylan2b OPosetaBaseObBaseOcBaseOcObbOacOa
24 vex cV
25 14 24 brcnv bO-1ccOb
26 15 25 anbi12ci aO-1bbO-1ccObbOa
27 11 24 brcnv aO-1ccOa
28 23 26 27 3imtr4g OPosetaBaseObBaseOcBaseOaO-1bbO-1caO-1c
29 3 6 9 13 20 28 isposd OPosetDPoset