Description: The relation T is a strict order on S (a corollary of wemapso2 ). (Contributed by Mario Carneiro, 28-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cantnfs.s | |
|
cantnfs.a | |
||
cantnfs.b | |
||
oemapval.t | |
||
Assertion | oemapso | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfs.s | |
|
2 | cantnfs.a | |
|
3 | cantnfs.b | |
|
4 | oemapval.t | |
|
5 | eloni | |
|
6 | ordwe | |
|
7 | weso | |
|
8 | 3 5 6 7 | 4syl | |
9 | cnvso | |
|
10 | 8 9 | sylib | |
11 | eloni | |
|
12 | ordwe | |
|
13 | weso | |
|
14 | 2 11 12 13 | 4syl | |
15 | fvex | |
|
16 | 15 | epeli | |
17 | vex | |
|
18 | vex | |
|
19 | 17 18 | brcnv | |
20 | epel | |
|
21 | 19 20 | bitri | |
22 | 21 | imbi1i | |
23 | 22 | ralbii | |
24 | 16 23 | anbi12i | |
25 | 24 | rexbii | |
26 | 25 | opabbii | |
27 | 4 26 | eqtr4i | |
28 | breq1 | |
|
29 | 28 | cbvrabv | |
30 | 27 29 | wemapso2 | |
31 | 3 10 14 30 | syl3anc | |
32 | eqid | |
|
33 | 32 2 3 | cantnfdm | |
34 | 1 33 | eqtrid | |
35 | soeq2 | |
|
36 | 34 35 | syl | |
37 | 31 36 | mpbird | |