Metamath Proof Explorer


Theorem oemapso

Description: The relation T is a strict order on S (a corollary of wemapso2 ). (Contributed by Mario Carneiro, 28-May-2015)

Ref Expression
Hypotheses cantnfs.s S=domACNFB
cantnfs.a φAOn
cantnfs.b φBOn
oemapval.t T=xy|zBxzyzwBzwxw=yw
Assertion oemapso φTOrS

Proof

Step Hyp Ref Expression
1 cantnfs.s S=domACNFB
2 cantnfs.a φAOn
3 cantnfs.b φBOn
4 oemapval.t T=xy|zBxzyzwBzwxw=yw
5 eloni BOnOrdB
6 ordwe OrdBEWeB
7 weso EWeBEOrB
8 3 5 6 7 4syl φEOrB
9 cnvso EOrBE-1OrB
10 8 9 sylib φE-1OrB
11 eloni AOnOrdA
12 ordwe OrdAEWeA
13 weso EWeAEOrA
14 2 11 12 13 4syl φEOrA
15 fvex yzV
16 15 epeli xzEyzxzyz
17 vex wV
18 vex zV
19 17 18 brcnv wE-1zzEw
20 epel zEwzw
21 19 20 bitri wE-1zzw
22 21 imbi1i wE-1zxw=ywzwxw=yw
23 22 ralbii wBwE-1zxw=ywwBzwxw=yw
24 16 23 anbi12i xzEyzwBwE-1zxw=ywxzyzwBzwxw=yw
25 24 rexbii zBxzEyzwBwE-1zxw=ywzBxzyzwBzwxw=yw
26 25 opabbii xy|zBxzEyzwBwE-1zxw=yw=xy|zBxzyzwBzwxw=yw
27 4 26 eqtr4i T=xy|zBxzEyzwBwE-1zxw=yw
28 breq1 g=xfinSuppgfinSuppx
29 28 cbvrabv gAB|finSuppg=xAB|finSuppx
30 27 29 wemapso2 BOnE-1OrBEOrATOrgAB|finSuppg
31 3 10 14 30 syl3anc φTOrgAB|finSuppg
32 eqid gAB|finSuppg=gAB|finSuppg
33 32 2 3 cantnfdm φdomACNFB=gAB|finSuppg
34 1 33 eqtrid φS=gAB|finSuppg
35 soeq2 S=gAB|finSuppgTOrSTOrgAB|finSuppg
36 34 35 syl φTOrSTOrgAB|finSuppg
37 31 36 mpbird φTOrS