Metamath Proof Explorer


Theorem oenord1

Description: When two ordinals (both at least as large as two) are raised to the same power, ordering of the powers is not equivalent to the ordering of the bases. Remark 3.26 of Schloeder p. 11. (Contributed by RP, 4-Feb-2025)

Ref Expression
Assertion oenord1 aOn2𝑜bOn2𝑜cOn1𝑜¬aba𝑜cb𝑜c

Proof

Step Hyp Ref Expression
1 oenord1ex ¬2𝑜3𝑜2𝑜𝑜ω3𝑜𝑜ω
2 2on 2𝑜On
3 1oex 1𝑜V
4 3 prid2 1𝑜1𝑜
5 df2o3 2𝑜=1𝑜
6 4 5 eleqtrri 1𝑜2𝑜
7 ondif2 2𝑜On2𝑜2𝑜On1𝑜2𝑜
8 2 6 7 mpbir2an 2𝑜On2𝑜
9 3on 3𝑜On
10 3 tpid2 1𝑜1𝑜2𝑜
11 df3o2 3𝑜=1𝑜2𝑜
12 10 11 eleqtrri 1𝑜3𝑜
13 ondif2 3𝑜On2𝑜3𝑜On1𝑜3𝑜
14 9 12 13 mpbir2an 3𝑜On2𝑜
15 omelon ωOn
16 peano1 ω
17 ondif1 ωOn1𝑜ωOnω
18 15 16 17 mpbir2an ωOn1𝑜
19 oveq2 c=ω2𝑜𝑜c=2𝑜𝑜ω
20 oveq2 c=ω3𝑜𝑜c=3𝑜𝑜ω
21 19 20 eleq12d c=ω2𝑜𝑜c3𝑜𝑜c2𝑜𝑜ω3𝑜𝑜ω
22 21 bibi2d c=ω2𝑜3𝑜2𝑜𝑜c3𝑜𝑜c2𝑜3𝑜2𝑜𝑜ω3𝑜𝑜ω
23 22 notbid c=ω¬2𝑜3𝑜2𝑜𝑜c3𝑜𝑜c¬2𝑜3𝑜2𝑜𝑜ω3𝑜𝑜ω
24 23 rspcev ωOn1𝑜¬2𝑜3𝑜2𝑜𝑜ω3𝑜𝑜ωcOn1𝑜¬2𝑜3𝑜2𝑜𝑜c3𝑜𝑜c
25 18 24 mpan ¬2𝑜3𝑜2𝑜𝑜ω3𝑜𝑜ωcOn1𝑜¬2𝑜3𝑜2𝑜𝑜c3𝑜𝑜c
26 eleq2 b=3𝑜2𝑜b2𝑜3𝑜
27 oveq1 b=3𝑜b𝑜c=3𝑜𝑜c
28 27 eleq2d b=3𝑜2𝑜𝑜cb𝑜c2𝑜𝑜c3𝑜𝑜c
29 26 28 bibi12d b=3𝑜2𝑜b2𝑜𝑜cb𝑜c2𝑜3𝑜2𝑜𝑜c3𝑜𝑜c
30 29 notbid b=3𝑜¬2𝑜b2𝑜𝑜cb𝑜c¬2𝑜3𝑜2𝑜𝑜c3𝑜𝑜c
31 30 rexbidv b=3𝑜cOn1𝑜¬2𝑜b2𝑜𝑜cb𝑜ccOn1𝑜¬2𝑜3𝑜2𝑜𝑜c3𝑜𝑜c
32 31 rspcev 3𝑜On2𝑜cOn1𝑜¬2𝑜3𝑜2𝑜𝑜c3𝑜𝑜cbOn2𝑜cOn1𝑜¬2𝑜b2𝑜𝑜cb𝑜c
33 14 25 32 sylancr ¬2𝑜3𝑜2𝑜𝑜ω3𝑜𝑜ωbOn2𝑜cOn1𝑜¬2𝑜b2𝑜𝑜cb𝑜c
34 eleq1 a=2𝑜ab2𝑜b
35 oveq1 a=2𝑜a𝑜c=2𝑜𝑜c
36 35 eleq1d a=2𝑜a𝑜cb𝑜c2𝑜𝑜cb𝑜c
37 34 36 bibi12d a=2𝑜aba𝑜cb𝑜c2𝑜b2𝑜𝑜cb𝑜c
38 37 notbid a=2𝑜¬aba𝑜cb𝑜c¬2𝑜b2𝑜𝑜cb𝑜c
39 38 2rexbidv a=2𝑜bOn2𝑜cOn1𝑜¬aba𝑜cb𝑜cbOn2𝑜cOn1𝑜¬2𝑜b2𝑜𝑜cb𝑜c
40 39 rspcev 2𝑜On2𝑜bOn2𝑜cOn1𝑜¬2𝑜b2𝑜𝑜cb𝑜caOn2𝑜bOn2𝑜cOn1𝑜¬aba𝑜cb𝑜c
41 8 33 40 sylancr ¬2𝑜3𝑜2𝑜𝑜ω3𝑜𝑜ωaOn2𝑜bOn2𝑜cOn1𝑜¬aba𝑜cb𝑜c
42 1 41 ax-mp aOn2𝑜bOn2𝑜cOn1𝑜¬aba𝑜cb𝑜c