Metamath Proof Explorer


Theorem ofaddmndmap

Description: The function operation applied to the addition for functions (with the same domain) into a monoid is a function (with the same domain) into the monoid. (Contributed by AV, 6-Apr-2019)

Ref Expression
Hypotheses ofaddmndmap.r R = Base M
ofaddmndmap.p + ˙ = + M
Assertion ofaddmndmap M Mnd V Y A R V B R V A + ˙ f B R V

Proof

Step Hyp Ref Expression
1 ofaddmndmap.r R = Base M
2 ofaddmndmap.p + ˙ = + M
3 simpl1 M Mnd V Y A R V B R V x R y R M Mnd
4 simprl M Mnd V Y A R V B R V x R y R x R
5 simprr M Mnd V Y A R V B R V x R y R y R
6 1 2 mndcl M Mnd x R y R x + ˙ y R
7 3 4 5 6 syl3anc M Mnd V Y A R V B R V x R y R x + ˙ y R
8 elmapi A R V A : V R
9 8 adantr A R V B R V A : V R
10 9 3ad2ant3 M Mnd V Y A R V B R V A : V R
11 elmapi B R V B : V R
12 11 adantl A R V B R V B : V R
13 12 3ad2ant3 M Mnd V Y A R V B R V B : V R
14 simp2 M Mnd V Y A R V B R V V Y
15 inidm V V = V
16 7 10 13 14 14 15 off M Mnd V Y A R V B R V A + ˙ f B : V R
17 1 fvexi R V
18 elmapg R V V Y A + ˙ f B R V A + ˙ f B : V R
19 17 14 18 sylancr M Mnd V Y A R V B R V A + ˙ f B R V A + ˙ f B : V R
20 16 19 mpbird M Mnd V Y A R V B R V A + ˙ f B R V