Metamath Proof Explorer


Theorem ofc2

Description: Right operation by a constant. (Contributed by NM, 7-Oct-2014)

Ref Expression
Hypotheses ofc2.1 φAV
ofc2.2 φBW
ofc2.3 φFFnA
ofc2.4 φXAFX=C
Assertion ofc2 φXAFRfA×BX=CRB

Proof

Step Hyp Ref Expression
1 ofc2.1 φAV
2 ofc2.2 φBW
3 ofc2.3 φFFnA
4 ofc2.4 φXAFX=C
5 fnconstg BWA×BFnA
6 2 5 syl φA×BFnA
7 inidm AA=A
8 fvconst2g BWXAA×BX=B
9 2 8 sylan φXAA×BX=B
10 3 6 1 1 7 4 9 ofval φXAFRfA×BX=CRB