Metamath Proof Explorer


Theorem ofcof

Description: Relate function operation with operation with a constant. (Contributed by Thierry Arnoux, 3-Oct-2018)

Ref Expression
Hypotheses ofcof.1 φF:AB
ofcof.2 φAV
ofcof.3 φCW
Assertion ofcof φFfcRC=FRfA×C

Proof

Step Hyp Ref Expression
1 ofcof.1 φF:AB
2 ofcof.2 φAV
3 ofcof.3 φCW
4 1 ffnd φFFnA
5 eqidd φxAFx=Fx
6 4 2 3 5 ofcfval φFfcRC=xAFxRC
7 fnconstg CWA×CFnA
8 3 7 syl φA×CFnA
9 inidm AA=A
10 fvconst2g CWxAA×Cx=C
11 3 10 sylan φxAA×Cx=C
12 4 8 2 2 9 5 11 offval φFRfA×C=xAFxRC
13 6 12 eqtr4d φFfcRC=FRfA×C