Metamath Proof Explorer


Theorem ofsubid

Description: Function analogue of subid . (Contributed by Steve Rodriguez, 5-Nov-2015)

Ref Expression
Assertion ofsubid A V F : A F f F = A × 0

Proof

Step Hyp Ref Expression
1 simpl A V F : A A V
2 ffn F : A F Fn A
3 2 adantl A V F : A F Fn A
4 c0ex 0 V
5 4 fconst A × 0 : A 0
6 ffn A × 0 : A 0 A × 0 Fn A
7 5 6 mp1i A V F : A A × 0 Fn A
8 eqidd A V F : A x A F x = F x
9 ffvelrn F : A x A F x
10 9 subidd F : A x A F x F x = 0
11 10 adantll A V F : A x A F x F x = 0
12 4 fvconst2 x A A × 0 x = 0
13 12 adantl A V F : A x A A × 0 x = 0
14 11 13 eqtr4d A V F : A x A F x F x = A × 0 x
15 1 3 3 7 8 8 14 offveq A V F : A F f F = A × 0