Metamath Proof Explorer


Theorem ogrpinv0lt

Description: In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018)

Ref Expression
Hypotheses ogrpinvlt.0 B=BaseG
ogrpinvlt.1 <˙=<G
ogrpinvlt.2 I=invgG
ogrpinv0lt.3 0˙=0G
Assertion ogrpinv0lt GoGrpXB0˙<˙XIX<˙0˙

Proof

Step Hyp Ref Expression
1 ogrpinvlt.0 B=BaseG
2 ogrpinvlt.1 <˙=<G
3 ogrpinvlt.2 I=invgG
4 ogrpinv0lt.3 0˙=0G
5 simpll GoGrpXB0˙<˙XGoGrp
6 ogrpgrp GoGrpGGrp
7 5 6 syl GoGrpXB0˙<˙XGGrp
8 1 4 grpidcl GGrp0˙B
9 7 8 syl GoGrpXB0˙<˙X0˙B
10 simplr GoGrpXB0˙<˙XXB
11 1 3 grpinvcl GGrpXBIXB
12 7 10 11 syl2anc GoGrpXB0˙<˙XIXB
13 simpr GoGrpXB0˙<˙X0˙<˙X
14 eqid +G=+G
15 1 2 14 ogrpaddlt GoGrp0˙BXBIXB0˙<˙X0˙+GIX<˙X+GIX
16 5 9 10 12 13 15 syl131anc GoGrpXB0˙<˙X0˙+GIX<˙X+GIX
17 1 14 4 grplid GGrpIXB0˙+GIX=IX
18 7 12 17 syl2anc GoGrpXB0˙<˙X0˙+GIX=IX
19 1 14 4 3 grprinv GGrpXBX+GIX=0˙
20 7 10 19 syl2anc GoGrpXB0˙<˙XX+GIX=0˙
21 16 18 20 3brtr3d GoGrpXB0˙<˙XIX<˙0˙
22 simpll GoGrpXBIX<˙0˙GoGrp
23 22 6 syl GoGrpXBIX<˙0˙GGrp
24 simplr GoGrpXBIX<˙0˙XB
25 23 24 11 syl2anc GoGrpXBIX<˙0˙IXB
26 22 6 8 3syl GoGrpXBIX<˙0˙0˙B
27 simpr GoGrpXBIX<˙0˙IX<˙0˙
28 1 2 14 ogrpaddlt GoGrpIXB0˙BXBIX<˙0˙IX+GX<˙0˙+GX
29 22 25 26 24 27 28 syl131anc GoGrpXBIX<˙0˙IX+GX<˙0˙+GX
30 1 14 4 3 grplinv GGrpXBIX+GX=0˙
31 23 24 30 syl2anc GoGrpXBIX<˙0˙IX+GX=0˙
32 1 14 4 grplid GGrpXB0˙+GX=X
33 23 24 32 syl2anc GoGrpXBIX<˙0˙0˙+GX=X
34 29 31 33 3brtr3d GoGrpXBIX<˙0˙0˙<˙X
35 21 34 impbida GoGrpXB0˙<˙XIX<˙0˙