Description: In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ogrpinvlt.0 | |
|
ogrpinvlt.1 | |
||
ogrpinvlt.2 | |
||
ogrpinv0lt.3 | |
||
Assertion | ogrpinv0lt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ogrpinvlt.0 | |
|
2 | ogrpinvlt.1 | |
|
3 | ogrpinvlt.2 | |
|
4 | ogrpinv0lt.3 | |
|
5 | simpll | |
|
6 | ogrpgrp | |
|
7 | 5 6 | syl | |
8 | 1 4 | grpidcl | |
9 | 7 8 | syl | |
10 | simplr | |
|
11 | 1 3 | grpinvcl | |
12 | 7 10 11 | syl2anc | |
13 | simpr | |
|
14 | eqid | |
|
15 | 1 2 14 | ogrpaddlt | |
16 | 5 9 10 12 13 15 | syl131anc | |
17 | 1 14 4 | grplid | |
18 | 7 12 17 | syl2anc | |
19 | 1 14 4 3 | grprinv | |
20 | 7 10 19 | syl2anc | |
21 | 16 18 20 | 3brtr3d | |
22 | simpll | |
|
23 | 22 6 | syl | |
24 | simplr | |
|
25 | 23 24 11 | syl2anc | |
26 | 22 6 8 | 3syl | |
27 | simpr | |
|
28 | 1 2 14 | ogrpaddlt | |
29 | 22 25 26 24 27 28 | syl131anc | |
30 | 1 14 4 3 | grplinv | |
31 | 23 24 30 | syl2anc | |
32 | 1 14 4 | grplid | |
33 | 23 24 32 | syl2anc | |
34 | 29 31 33 | 3brtr3d | |
35 | 21 34 | impbida | |