Description: In an ordered group, the ordering is compatible with group subtraction. (Contributed by Thierry Arnoux, 30-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ogrpsub.0 | |
|
ogrpsub.1 | |
||
ogrpsub.2 | |
||
Assertion | ogrpsub | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ogrpsub.0 | |
|
2 | ogrpsub.1 | |
|
3 | ogrpsub.2 | |
|
4 | isogrp | |
|
5 | 4 | simprbi | |
6 | 5 | 3ad2ant1 | |
7 | simp21 | |
|
8 | simp22 | |
|
9 | ogrpgrp | |
|
10 | 9 | 3ad2ant1 | |
11 | simp23 | |
|
12 | eqid | |
|
13 | 1 12 | grpinvcl | |
14 | 10 11 13 | syl2anc | |
15 | simp3 | |
|
16 | eqid | |
|
17 | 1 2 16 | omndadd | |
18 | 6 7 8 14 15 17 | syl131anc | |
19 | 1 16 12 3 | grpsubval | |
20 | 7 11 19 | syl2anc | |
21 | 1 16 12 3 | grpsubval | |
22 | 8 11 21 | syl2anc | |
23 | 18 20 22 | 3brtr4d | |