Metamath Proof Explorer


Theorem oieu

Description: Uniqueness of the unique ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015) (Revised by Mario Carneiro, 25-Jun-2015)

Ref Expression
Hypothesis oicl.1 F=OrdIsoRA
Assertion oieu RWeARSeAOrdBGIsomE,RBAB=domFG=F

Proof

Step Hyp Ref Expression
1 oicl.1 F=OrdIsoRA
2 simprr RWeARSeAOrdBGIsomE,RBAGIsomE,RBA
3 1 ordtype RWeARSeAFIsomE,RdomFA
4 3 adantr RWeARSeAOrdBGIsomE,RBAFIsomE,RdomFA
5 isocnv FIsomE,RdomFAF-1IsomR,EAdomF
6 4 5 syl RWeARSeAOrdBGIsomE,RBAF-1IsomR,EAdomF
7 isotr GIsomE,RBAF-1IsomR,EAdomFF-1GIsomE,EBdomF
8 2 6 7 syl2anc RWeARSeAOrdBGIsomE,RBAF-1GIsomE,EBdomF
9 simprl RWeARSeAOrdBGIsomE,RBAOrdB
10 1 oicl OrddomF
11 10 a1i RWeARSeAOrdBGIsomE,RBAOrddomF
12 ordiso2 F-1GIsomE,EBdomFOrdBOrddomFB=domF
13 8 9 11 12 syl3anc RWeARSeAOrdBGIsomE,RBAB=domF
14 ordwe OrdBEWeB
15 14 ad2antrl RWeARSeAOrdBGIsomE,RBAEWeB
16 epse ESeB
17 16 a1i RWeARSeAOrdBGIsomE,RBAESeB
18 isoeq4 B=domFFIsomE,RBAFIsomE,RdomFA
19 13 18 syl RWeARSeAOrdBGIsomE,RBAFIsomE,RBAFIsomE,RdomFA
20 4 19 mpbird RWeARSeAOrdBGIsomE,RBAFIsomE,RBA
21 weisoeq EWeBESeBGIsomE,RBAFIsomE,RBAG=F
22 15 17 2 20 21 syl22anc RWeARSeAOrdBGIsomE,RBAG=F
23 13 22 jca RWeARSeAOrdBGIsomE,RBAB=domFG=F
24 23 ex RWeARSeAOrdBGIsomE,RBAB=domFG=F
25 3 10 jctil RWeARSeAOrddomFFIsomE,RdomFA
26 ordeq B=domFOrdBOrddomF
27 26 adantr B=domFG=FOrdBOrddomF
28 isoeq4 B=domFGIsomE,RBAGIsomE,RdomFA
29 isoeq1 G=FGIsomE,RdomFAFIsomE,RdomFA
30 28 29 sylan9bb B=domFG=FGIsomE,RBAFIsomE,RdomFA
31 27 30 anbi12d B=domFG=FOrdBGIsomE,RBAOrddomFFIsomE,RdomFA
32 25 31 syl5ibrcom RWeARSeAB=domFG=FOrdBGIsomE,RBA
33 24 32 impbid RWeARSeAOrdBGIsomE,RBAB=domFG=F