Metamath Proof Explorer


Theorem oldfi

Description: The old set of an ordinal natural is finite. (Contributed by Scott Fenton, 20-Aug-2025)

Ref Expression
Assertion oldfi A ω Old A Fin

Proof

Step Hyp Ref Expression
1 nnon A ω A On
2 oldval A On Old A = M A
3 1 2 syl A ω Old A = M A
4 madef M : On 𝒫 No
5 ffun M : On 𝒫 No Fun M
6 4 5 ax-mp Fun M
7 nnfi A ω A Fin
8 imafi Fun M A Fin M A Fin
9 6 7 8 sylancr A ω M A Fin
10 elnn x A A ω x ω
11 10 ancoms A ω x A x ω
12 madefi x ω M x Fin
13 11 12 syl A ω x A M x Fin
14 13 ralrimiva A ω x A M x Fin
15 onss A On A On
16 1 15 syl A ω A On
17 4 fdmi dom M = On
18 16 17 sseqtrrdi A ω A dom M
19 funimass4 Fun M A dom M M A Fin x A M x Fin
20 6 18 19 sylancr A ω M A Fin x A M x Fin
21 14 20 mpbird A ω M A Fin
22 unifi M A Fin M A Fin M A Fin
23 9 21 22 syl2anc A ω M A Fin
24 3 23 eqeltrd A ω Old A Fin