Metamath Proof Explorer


Theorem olm01

Description: Meet with lattice zero is zero. ( chm0 analog.) (Contributed by NM, 8-Nov-2011)

Ref Expression
Hypotheses olm0.b B=BaseK
olm0.m ˙=meetK
olm0.z 0˙=0.K
Assertion olm01 KOLXBX˙0˙=0˙

Proof

Step Hyp Ref Expression
1 olm0.b B=BaseK
2 olm0.m ˙=meetK
3 olm0.z 0˙=0.K
4 eqid K=K
5 ollat KOLKLat
6 5 adantr KOLXBKLat
7 simpr KOLXBXB
8 olop KOLKOP
9 8 adantr KOLXBKOP
10 1 3 op0cl KOP0˙B
11 9 10 syl KOLXB0˙B
12 1 2 latmcl KLatXB0˙BX˙0˙B
13 6 7 11 12 syl3anc KOLXBX˙0˙B
14 1 4 2 latmle2 KLatXB0˙BX˙0˙K0˙
15 6 7 11 14 syl3anc KOLXBX˙0˙K0˙
16 1 4 3 op0le KOPXB0˙KX
17 8 16 sylan KOLXB0˙KX
18 1 4 latref KLat0˙B0˙K0˙
19 6 11 18 syl2anc KOLXB0˙K0˙
20 1 4 2 latlem12 KLat0˙BXB0˙B0˙KX0˙K0˙0˙KX˙0˙
21 6 11 7 11 20 syl13anc KOLXB0˙KX0˙K0˙0˙KX˙0˙
22 17 19 21 mpbi2and KOLXB0˙KX˙0˙
23 1 4 6 13 11 15 22 latasymd KOLXBX˙0˙=0˙