Metamath Proof Explorer


Theorem olm12

Description: The meet of an ortholattice element with one equals itself. (Contributed by NM, 22-May-2012)

Ref Expression
Hypotheses olm1.b B=BaseK
olm1.m ˙=meetK
olm1.u 1˙=1.K
Assertion olm12 KOLXB1˙˙X=X

Proof

Step Hyp Ref Expression
1 olm1.b B=BaseK
2 olm1.m ˙=meetK
3 olm1.u 1˙=1.K
4 ollat KOLKLat
5 4 adantr KOLXBKLat
6 olop KOLKOP
7 6 adantr KOLXBKOP
8 1 3 op1cl KOP1˙B
9 7 8 syl KOLXB1˙B
10 simpr KOLXBXB
11 1 2 latmcom KLat1˙BXB1˙˙X=X˙1˙
12 5 9 10 11 syl3anc KOLXB1˙˙X=X˙1˙
13 1 2 3 olm11 KOLXBX˙1˙=X
14 12 13 eqtrd KOLXB1˙˙X=X